Systematic review and meta-analysis as described in:
- Milou S.C. Sep, Elbert Geuze, Marian Joëls. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. medRxiv 2021.07.19.21260790; doi: https://doi.org/10.1101/2021.07.19.21260790 [preprint]
- Sep, M.S.C., Geuze, E. & Joëls, M. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. Transl Psychiatry 13, 376 (2023). https://doi.org/10.1038/s41398-023-02660-7
_ README.md
: an overview of the project
|___ data
: data files used in the project
|___ processed_data
: intermediate files from the analysis
|___ results
: results of the analyses (data, tables, figures)
|___ R
: contains all R-code in the project
- script: Merge data S1, S2, S3 to one file with
prepare_merge.rmd
. - input: search 1 TRACE data_collection_search1.xlsx, search 2 TRACE data_collection_search2.xlsx, search 3 TRACE_data_collection_search3.xlsx
- output:
TRACEmerged.RDS
- script: Recode variables and add method codes with
prepare_recode.rmd
. - input:
TRACEmerged.RDS
, TRACE_method_codes.xlsx - output:
TRACErecoded.RDS
- script: process QA data with
prepare_QA.rmd
- input: TRACE_RoBQA_data.xlsx,
- output:
TRACE_QA_animal.RData
,TRACE_QA_human.RData
, andRoB.jpeg
(optional:RoB_clinical.jpeg
,RoB_preclinical.jpeg
)
- script: prepare data for analysis in
prepare_effect_size_QA.rmd
- input:
TRACErecoded.RDS
,TRACE_QA_animal.RData
, andTRACE_QA_human.RData
- output:
TRACEprepared.RData
(nb n=1647)
- script: meta-regression Valence x Phase:
meta_regression.rmd
. This script usesmeta_regression_influentials.r
to calculate potential influential case and outliers - input:
TRACEprepared.RData
- output: datasets used in analyses:
clinical.data.metaregression.RDS
,preclinical.data.metaregression.RDS
and results (main, diagnostics, sensitivity, graphs)- clinical:
phase_valence_PTSD_clinical.csv
,phase_valence_PTSD_clinical.tiff
,funnel.colours.clinical.tiff
,phase_valence_PTSD_clinical.FSN.csv
,influentials.clinical.rds
,sens.clinical.infout.csv
,sens.mod.A.csv
,sens.mod.B.csv
,sens.mod.C.csv
- preclinical:
phase_valence_PTSD_preclinical.csv
,phase_valence_PTSD_preclinical.tiff
,funnel.colours.preclinical.tiff
,phase_valence_PTSD_preclinical.FSN.csv
,influentials.preclinical.rds
,sens.preclinical.infout.csv
,sens.mod.E.csv
,sens.mod.D.csv
,sens.mod.F.csv
- figure:
PTSD.clinical.preclinical.tiff
- clinical:
- script:
meta_forest_meta_cart.rmd
- input:
TRACEprepared.RData
- output:
data.explore.rds
(NB: also used for descriptives table)- clinical:
clinical.data.explorative.RDS
,preclinical.data.explorative.RDS
,fitted.clinicalMetaForest.RDS
,metaforest_Clinical_convergence.tiff
,metaforest_Clinical_varImportance.tiff
,important_variables_clinical_metaforest.csv
,metaforest_PD_clinical.tiff
- preclinical:
fitted.preclinicalMetaForest.RDS
,metaforest_Preclinical_convergence.tiff
,metaforest_Preclinical_varImportance.tiff
,REtree.P.rds
,metaCART.preclinical.tiff
,important_variables_preclinical_metaforest.csv
,metaforest_PD_preclinical.tiff
,metaforest_PD_preclinical_metaCARTfollowup.tiff
,VarImp.clinical.preclinical.tiff
- clinical:
- script:
flowchart.rmd
- input: PMID hits & screening search 1, 2 and 3: Review PTSD Cognition AbstractScreening_Overeenstemming EG & MS v15.11.2016.xlsx, pubmed_result_search2_human 6.1.20.txt, pubmed_result_search2_animal 6.1.20.txt, pmid.human.s3.learn.22.5.20.txt, pmid.animal.s3.learn.22.5.20.txt, Checked_TRACE_screening_search3_MS_EG.xlsx
- some additional code for screening in search 2
- step 1: identify inconsistencies in search 2. input (initial screening data): TRACE_screening_search2_SH.xlsx & TRACE_screening_search2_MS.xlsx; output (abstract screening inconsistencies): inconsistencies_human_s2.csv & inconsistencies_animal_s2.csv
- step 2: identify required full text checks in search 2. input (files with abstract screening feedback): inconsistencies_animal_s2_SH.csv & inconsistencies_human_s2_SH.csv"; output (uploaded to OSF): required_full_checks_human_s2.csv & required_full_checks_animal_s2.csv
- step 3: get results full text check search 2. input (files with full text screening feedback): required_full_checks_animal_s2_MS.csv" & required_full_checks_human_s2_SH.csv"; output (uploaded to OSF): animal_inclusions_s2.csv & human_inclusions_s2.csv
- input: Data extraction information: TRACE data_collection_search1.xlsx, TRACE data_collection_search2.xlsx, TRACE_data_collection_search3.xlsx
- input: analyses datasets (NB output analyses scripts):
TRACEprepared.RData
,clinical.data.metaregression.RDS
,clinical.data.explorative.RDS"
,preclinical.data.metaregression.RDS
,preclinical.data.explorative.RDS
- output:
unique_screened_articles.csv
. enflowchart.tiff
- optional output (used to select papers for QA):
Human.PMIDs.QA.S2.csv
,Animal.PMIDs.QA.S2.csv
. enHuman.PMIDs.QA.S3.csv
enAnimal.PMIDs.QA.S3.csv
- Script:
descriptives.rmd
- input:
data.explore.rds
, created inDataDrivenAnalysis.rmd
- output: tables in word files:
descriptives.comparison.doc
,descriptives.csv
(optional),descriptives.combined.doc
,descriptives.clinical.doc
,descriptives.preclinical.doc
- script:
visualize_QA.Rmd
- input:
TRACE_QA_animal.RData
,TRACE_QA_human.RData
,clinical.data.metaregression.RDS
preclinical.data.metaregression.RDS
(Note: these objects are outputs fromprepare_QA.RMD
andmeta_regression.rmd
) - output:
RoB.jpeg