Skip to content

Official Implementation of the paper "A Simple yet Powerful Deep Active Learning with Snapshots Ensembles" (ICLR 2023)

License

Notifications You must be signed in to change notification settings

nannullna/snapshot-al

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Simple yet Powerful Deep Active Learning with Snapshots Ensembles

Official Implementation of the paper "A Simple yet Powerful Deep Active Learning with Snapshots Ensembles"


1. Introduction


2. How to Use

2-1. How to Run

Run experiments on CIFAR-10 dataset with ResNet-18. Specify an acquisition function with --query_type and acquisition size with --query_size argument.

python scripts/train_snapshot.py -f configs/cifar10_resnet18.json --query_type vr

python scripts/train_ensemble.py -f configs/cifar10_resnet18.json --query_type vr

python scripts/train_sameinit.py -f configs/cifar10_resnet18.json --query_type vr

Run experiments on CIFAR-100 dataset with ResNet-18. Specify an acquisition function with --query_type and acquisition size with --query_size argument.

python scripts/train_snapshot.py -f configs/cifar100_resnet18.json --query_type vr

python scripts/train_ensemble.py -f configs/cifar100_resnet18.json --query_type vr

python scripts/train_sameinit.py -f configs/cifar100_resnet18.json --query_type vr

Run experiments on Tiny-ImageNet-200 dataset with ResNet-50. Specify an acquisition function with --query_type and acquisition size with --query_size argument.

python scripts/train_snapshot.py -f configs/tiny_resnet50.json --query_type vr

python scripts/train_ensemble.py -f configs/tiny_resnet50.json --query_type vr

python scripts/train_sameinit.py -f configs/tiny_resnet50.json --query_type vr

2-1-1. Download Datasets

CIFAR10 and CIFAR100 dataset will be downloaded using torchvision and saved to a directory provided as --dataset_path.

However, for Tiny Imagenet, you will need to download it first, unzip it, and specify a unzipped directory as --dataset_path.

Our code will automatically create a file structure for the validation set.

Please edit config files according to your local setting before running the scripts.

2-1-2. Edit Configs

Configuration files are in ./cifar/configs and ./tiny-imagenet/configs folder. You can directly edit these files for different hyperparameters.


About

Official Implementation of the paper "A Simple yet Powerful Deep Active Learning with Snapshots Ensembles" (ICLR 2023)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages