_|_|_|_| _| _| _|_|_| _| _| _|_| _| _|_| _|_|_| _| _| _|_| _|_|_|_| _|_| _| _| _| _| _| _| _| _| _|_|_| _| _| _|_|_| _|
Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in your persistence to stress test it, or anonymize data taken from a production service, Faker is for you.
Faker is heavily inspired by PHP Faker, Perl Faker, and by Ruby Faker.
For more details, see the extended docs.
Install with pip:
pip install fake-factory
NOTE: On Sept 15th, this package will be migrated to faker
on Pypi.
For details, see this issue: joke2k#331
Use faker.Factory.create()
to create and initialize a faker
generator, which can generate data by accessing properties named after
the type of data you want.
from faker import Factory
fake = Factory.create()
# OR
from faker import Faker
fake = Faker()
fake.name()
# 'Lucy Cechtelar'
fake.address()
# "426 Jordy Lodge
# Cartwrightshire, SC 88120-6700"
fake.text()
# Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam excepturi
# beatae sint laudantium consequatur. Magni occaecati itaque sint et sit tempore. Nesciunt
# amet quidem. Iusto deleniti cum autem ad quia aperiam.
# A consectetur quos aliquam. In iste aliquid et aut similique suscipit. Consequatur qui
# quaerat iste minus hic expedita. Consequuntur error magni et laboriosam. Aut aspernatur
# voluptatem sit aliquam. Dolores voluptatum est.
# Aut molestias et maxime. Fugit autem facilis quos vero. Eius quibusdam possimus est.
# Ea quaerat et quisquam. Deleniti sunt quam. Adipisci consequatur id in occaecati.
# Et sint et. Ut ducimus quod nemo ab voluptatum.
Each call to method fake.name()
yields a different (random) result.
This is because faker forwards faker.Generator.method_name()
calls
to faker.Generator.format(method_name)
.
for _ in range(0,10):
print fake.name()
# Adaline Reichel
# Dr. Santa Prosacco DVM
# Noemy Vandervort V
# Lexi O'Conner
# Gracie Weber
# Roscoe Johns
# Emmett Lebsack
# Keegan Thiel
# Wellington Koelpin II
# Ms. Karley Kiehn V
Each of the generator properties (like name
, address
, and
lorem
) are called "fake". A faker generator has many of them,
packaged in "providers".
Check the extended docs for a list of bundled providers and a list of community providers.
faker.Factory
can take a locale as an argument, to return localized
data. If no localized provider is found, the factory falls back to the
default en_US locale.
from faker import Factory
fake = Factory.create('it_IT')
for _ in range(0,10):
print fake.name()
> Elda Palumbo
> Pacifico Giordano
> Sig. Avide Guerra
> Yago Amato
> Eustachio Messina
> Dott. Violante Lombardo
> Sig. Alighieri Monti
> Costanzo Costa
> Nazzareno Barbieri
> Max Coppola
You can check available Faker locales in the source code, under the providers package. The localization of Faker is an ongoing process, for which we need your help. Please don't hesitate to create a localized provider for your own locale and submit a Pull Request (PR).
Included localized providers:
- bg_BG - Bulgarian
- cs_CZ - Czech
- de_DE - German
- dk_DK - Danish
- el_GR - Greek
- en_AU - English (Australia)
- en_CA - English (Canada)
- en_GB - English (Great Britain)
- en_US - English (United States)
- es_ES - Spanish (Spain)
- es_MX - Spanish (Mexico)
- fa_IR - Persian (Iran)
- fi_FI - Finnish
- fr_FR - French
- hi_IN - Hindi
- hr_HR - Croatian
- it_IT - Italian
- ja_JP - Japanese
- ko_KR - Korean
- lt_LT - Lithuanian
- lv_LV - Latvian
- ne_NP - Nepali
- nl_NL - Dutch (Netherlands)
- no_NO - Norwegian
- pl_PL - Polish
- pt_BR - Portuguese (Brazil)
- pt_PT - Portuguese (Portugal)
- ru_RU - Russian
- sl_SI - Slovene
- sv_SE - Swedish
- tr_TR - Turkish
- zh_CN - Chinese (China)
- zh_TW - Chinese (Taiwan)
When installed, you can invoke faker from the command-line:
faker [-h] [--version] [-o output]
[-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}]
[-r REPEAT] [-s SEP]
[-i {module.containing.custom_provider othermodule.containing.custom_provider}]
[fake] [fake argument [fake argument ...]]
Where:
faker
: is the script when installed in your environment, in development you could usepython -m faker
instead-h
,--help
: shows a help message--version
: shows the program's version number-o FILENAME
: redirects the output to the specified filename-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}
: allows use of a localized provider-r REPEAT
: will generate a specified number of outputs-s SEP
: will generate the specified separator after each generated output-i {my.custom_provider other.custom_provider}
list of additional custom providers to use. Note that is the import path of the module containing your Provider class, not the custom Provider class itself.fake
: is the name of the fake to generate an output for, such asname
,address
, ortext
[fake argument ...]
: optional arguments to pass to the fake (e.g. the profile fake takes an optional list of comma separated field names as the first argument)
Examples:
$ faker address
968 Bahringer Garden Apt. 722
Kristinaland, NJ 09890
$ faker -l de_DE address
Samira-Niemeier-Allee 56
94812 Biedenkopf
$ faker profile ssn,birthdate
{'ssn': u'628-10-1085', 'birthdate': '2008-03-29'}
$ faker -r=3 -s=";" name
Willam Kertzmann;
Josiah Maggio;
Gayla Schmitt;
from faker import Faker
fake = Faker()
# first, import a similar Provider or use the default one
from faker.providers import BaseProvider
# create new provider class
class MyProvider(BaseProvider):
def foo(self):
return 'bar'
# then add new provider to faker instance
fake.add_provider(MyProvider)
# now you can use:
fake.foo()
> 'bar'
import factory
from faker import Factory as FakerFactory
from myapp.models import Book
faker = FakerFactory.create()
class Book(factory.Factory):
FACTORY_FOR = Book
title = factory.LazyAttribute(lambda x: faker.sentence(nb_words=4))
author_name = factory.LazyAttribute(lambda x: faker.name())
The .random
property on the generator returns the instance of random.Random
used to generate the values:
from faker import Faker
fake = Faker()
fake.random
fake.random.getstate()
When using Faker for unit testing, you will often want to generate the same
data set. For convenience, the generator also provide a seed()
method, which
seeds the random number generator. Calling the same script twice with the same
seed produces the same results.
from faker import Faker
fake = Faker()
fake.seed(4321)
print fake.name()
> Margaret Boehm
The code above is equivalent to the following:
from faker import Faker
fake = Faker()
faker.random.seed(4321)
print fake.name()
> Margaret Boehm
Installing dependencies:
$ pip install -r faker/tests/requirements.txt
Run tests:
$ python setup.py test
or
$ python -m unittest -v faker.tests
Write documentation for providers:
$ python -m faker > docs.txt
Please see CONTRIBUTING.
Faker is released under the MIT License. See the bundled LICENSE file for details.