Antigen-specific CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans
SARS-CoV-2 infection and mRNA vaccination induce robust CD4+ T cell responses that are critical for the development of protective immunity. Here, we evaluated spike-specific CD4+ T cells in the blood and draining lymph node (dLN) of human subjects following BNT162b2 mRNA vaccination using single-cell transcriptomics. We analyze multiple spike-specific CD4+ T cell clonotypes, including novel clonotypes we define here using Trex, a new deep learning-based reverse epitope mapping method integrating single-cell T cell receptor (TCR) sequencing and transcriptomics to predict antigen-specificity. Human dLN spike-specific T follicular helper cells (TFH) exhibited distinct phenotypes, including germinal center (GC)-TFH and IL-10+ TFH, that varied over time during the GC response. Paired TCR clonotype analysis revealed tissue-specific segregation of circulating and dLN clonotypes, despite numerous spike-specific clonotypes in each compartment. Analysis of a separate SARS-CoV-2 infection cohort revealed circulating spike-specific CD4+ T cell profiles distinct from those found following BNT162b2 vaccination. Our findings provide an atlas of human antigen-specific CD4+ T cell transcriptional phenotypes in the dLN and blood following vaccination or infection.
The preprint is with the analysis of the data is available at Research Square
Sample Information and Data are Available at Zenodo