Skip to content

nderousseaux/lunarlander-v2-qlearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lunar Lander Q-Learning attempt

This is my attempt to solve the Lunar Lander problem using Q-Learning.

How to use this code

All the parameters can be indicated on the command line like this:

python main.py --hidden_layers="[64, 64]" --learning_rate=0.001 --epoch=1000 --gamma=0.99 --epsilon=1.0 --epsilon_dec=0.999 --epsilon_end=0.01 --mem_size=100000 --batch_size=64 --activation_function="relu" --render_during_training=True --live_plot=True

If you not indicate any parameter, the default value will be used. All the defaults the parameters is in the top of the main.py file.

If there is already a model saved, (on the folder models), the program will skip the training and will play the game using the model.

About

My implementation of q-learning for lunar-landerv2

Topics

Resources

Stars

Watchers

Forks

Languages