Skip to content
This repository has been archived by the owner on Jun 27, 2019. It is now read-only.
/ cloudtools Public archive

Scripts for working with Google Cloud Dataproc service

License

Notifications You must be signed in to change notification settings

Nealelab/cloudtools

Repository files navigation

Deprecation Notice

cloudtools has been deprecated in favor of the hailctl dataproc command-line utility. See the forum thread for more information.

cloudtools

PyPI

cloudtools is a small collection of command line tools intended to make using Hail on clusters running in Google Cloud's Dataproc service simpler.

These tools are written in Python and mostly function as wrappers around the gcloud suite of command line tools included in the Google Cloud SDK.

Installation

Prerequisites:

  • Mac OS X
  • Python 2 or 3
  • Google Cloud SDK
  • (Optional) Google Chrome installed in the (default) location /Applications/Google Chrome.app/Contents/MacOS/Google Chrome

cloudtools can be installed from the Python package index using the pip installer: pip install cloudtools

To update to the latest version: pip install cloudtools --upgrade

Usage

All functionality in cloudtools is accessed through the cluster module.

There are 7 commands within the cluster module:

  • cluster start <name> [args]
  • cluster submit <name> [args]
  • cluster connect <name> [args]
  • cluster modify <name> [args]
  • cluster diagnose <name> [args]
  • cluster stop <name>
  • cluster list

where <name> is the required, user-supplied name of the Dataproc cluster.

REMINDER: Don't forget to shut down your cluster when you're done! You can do this using cluster stop <name>, through the Google Cloud Console, or using the Google Cloud SDK directly with gcloud dataproc clusters delete name.

Examples

Script submission

One way to use the Dataproc service is to write complete Python scripts that use Hail, and then submit those scripts to the Dataproc cluster. An example of using cloudtools to interact with Dataproc in this way would be:

$ cluster start testcluster -p 6
...wait for cluster to start...
$ cluster submit testcluster myhailscript.py
...Hail job output...
Job [...] finished successfully.

where myhailscript.py lives on your computer in your current working directory and looks something like:

import hail as hl
hl.init()
...

This snippet starts a cluster named "testcluster" with the 1 master machine, 2 worker machines (the minimum/default), and 6 additional preemptible worker machines. Then, after the cluster is started (this can take a few minutes), a Hail script is submitted to the cluster "testcluster".

You can also pass arguments to the Hail script using the --args argument:

$ cluster submit testcluster myhailscript.py --args "arg1 arg2"

where myhailscript.py is

import sys
print('First argument: ', sys.argv[1])
print('Second argument: ', sys.argv[2])

would print

First argument: arg1
Second argument: arg2

Interactive Hail with Jupyter Notebooks

Another way to use the Dataproc service is through a Jupyter notebook running on the cluster's master machine. By default, cluster name start sets up and starts a Jupyter server process - complete with a Hail kernel - on the master machine of the cluster.

To use Hail in a Jupyter notebook, you'll need to have Google Chrome installed on your computer as described in the installation section above. Then, use

cluster connect testcluster notebook

to open a connection to the cluster "testcluster" through Chrome.

A new browser will open with the address localhost:8123 -- this is port 8123 on the cluster's master machine, which is where the Jupyter notebook server is running. You should see the Google Storage home directory of the project your cluster was launched in, with all of the project's buckets listed.

Select the bucket you'd like to work in, and you should see all of the files and directories in that bucket. You can either resume working on an existing .ipynb file in the bucket, or create a new Hail notebook by selecting Hail from the New notebook drop-down in the upper-right corner.

From the notebook, you can use Hail the same way that you would in a complete job script:

import hail as hl
hl.init()
...

To read or write files stored in a Google bucket outside of Hail-specific commands, use Hail's hadoop_read() and hadoop_write() helper functions. For example, to read in a TSV file from Google storage to a pandas dataframe:

import hail as hl
import pandas as pd

hl.init()

with hl.hadoop_open('gs://mybucket/mydata.tsv', 'r') as f:
    df = pd.read_table(f)

When you save your notebooks using either File -> Save and Checkpoint or command + s, they'll be saved automatically to the bucket you're working in.

Monitoring Hail jobs

While your job is running, you can monitor its progress through the Spark Web UI running on the cluster's master machine at port 4040. To connect to the SparkUI from your local machine, use

cluster connect testcluster ui

If you've attempted to start multiple Hail/Spark contexts, you may find that the web UI for a particular job is accessible through ports 4041 or 4042 instead. To connect to these ports, use

cluster connect testcluster ui1

to connect to 4041, or

cluster connect testcluster ui2

to connect to 4042.

To view details on a job that has completed, you can access the Spark history server running on port 18080 with

cluster connect testcluster spark-history

Module usage

$ cluster -h
usage: cluster [-h] {start,submit,connect,diagnose,stop} ...

Deploy and monitor Google Dataproc clusters to use with Hail.

positional arguments:
  {start,submit,connect,diagnose,stop}
    start               Start a Dataproc cluster configured for Hail.
    submit              Submit a Python script to a running Dataproc cluster.
    connect             Connect to a running Dataproc cluster.
    diagnose            Diagnose problems in a Dataproc cluster.
    stop                Shut down a Dataproc cluster.
    
optional arguments:
  -h, --help            show this help message and exit
$ cluster start -h
usage: cluster start [-h] [--hash HASH] [--spark {2.0.2,2.2.0}]
                     [--version {0.1,0.2}]
                     [--master-machine-type MASTER_MACHINE_TYPE]
                     [--master-memory-fraction MASTER_MEMORY_FRACTION]
                     [--master-boot-disk-size MASTER_BOOT_DISK_SIZE]
                     [--num-master-local-ssds NUM_MASTER_LOCAL_SSDS]
                     [--num-preemptible-workers NUM_PREEMPTIBLE_WORKERS]
                     [--num-worker-local-ssds NUM_WORKER_LOCAL_SSDS]
                     [--num-workers NUM_WORKERS]
                     [--preemptible-worker-boot-disk-size PREEMPTIBLE_WORKER_BOOT_DISK_SIZE]
                     [--worker-boot-disk-size WORKER_BOOT_DISK_SIZE]
                     [--worker-machine-type WORKER_MACHINE_TYPE] [--zone ZONE]
                     [--properties PROPERTIES] [--metadata METADATA]
                     [--packages PACKAGES] [--jar JAR] [--zip ZIP]
                     [--init INIT] [--init_timeout INIT_TIMEOUT] [--vep] [--dry-run]
                     name
Start a Dataproc cluster configured for Hail.

positional arguments:
  name                  Cluster name.

optional arguments:
  -h, --help            show this help message and exit
  --hash HASH           Hail build to use for notebook initialization
                        (default: latest).
  --spark {2.0.2,2.2.0}
                        Spark version used to build Hail (default: 2.2.0)
  --version {0.1,0.2}
                        Hail version to use (default: 0.2).
  --master-machine-type MASTER_MACHINE_TYPE, --master MASTER_MACHINE_TYPE, -m MASTER_MACHINE_TYPE
                        Master machine type (default: n1-highmem-8).
  --master-memory-fraction MASTER_MEMORY_FRACTION
                        Fraction of master memory allocated to the JVM. Use a
                        smaller value to reserve more memory for Python.
                        (default: 0.8)
  --master-boot-disk-size MASTER_BOOT_DISK_SIZE
                        Disk size of master machine, in GB (default: 100).
  --num-master-local-ssds NUM_MASTER_LOCAL_SSDS
                        Number of local SSDs to attach to the master machine
                        (default: 0).
  --num-preemptible-workers NUM_PREEMPTIBLE_WORKERS, --n-pre-workers NUM_PREEMPTIBLE_WORKERS, -p NUM_PREEMPTIBLE_WORKERS
                        Number of preemptible worker machines (default: 0).
  --num-worker-local-ssds NUM_WORKER_LOCAL_SSDS
                        Number of local SSDs to attach to each worker machine
                        (default: 0).
  --num-workers NUM_WORKERS, --n-workers NUM_WORKERS, -w NUM_WORKERS
                        Number of worker machines (default: 2).
  --preemptible-worker-boot-disk-size PREEMPTIBLE_WORKER_BOOT_DISK_SIZE
                        Disk size of preemptible machines, in GB (default:
                        40).
  --worker-boot-disk-size WORKER_BOOT_DISK_SIZE
                        Disk size of worker machines, in GB (default: 40).
  --worker-machine-type WORKER_MACHINE_TYPE, --worker WORKER_MACHINE_TYPE
                        Worker machine type (default: n1-standard-8, or
                        n1-highmem-8 with --vep).
  --zone ZONE           Compute zone for the cluster (default: us-central1-b).
  --properties PROPERTIES
                        Additional configuration properties for the cluster
  --metadata METADATA   Comma-separated list of metadata to add:
                        KEY1=VALUE1,KEY2=VALUE2...
  --packages PACKAGES, --pkgs PACKAGES
                        Comma-separated list of Python packages to be
                        installed on the master node.
  --jar JAR             Hail jar to use for Jupyter notebook.
  --zip ZIP             Hail zip to use for Jupyter notebook.
  --init INIT           Comma-separated list of init scripts to run.
  --init_timeout INIT_TIMEOUT
                        Flag to specify a timeout period for the
                        initialization action
  --vep                 Configure the cluster to run VEP.
  --dry-run             Print gcloud dataproc command, but don't run it.```

$ cluster submit -h
usage: cluster submit [-h] [--properties PROPERTIES]
                      [--args ARGS]
                      name script

Submit a Python script to a running Dataproc cluster.

positional arguments:
  name                  Cluster name.
  script

optional arguments:
  -h, --help            show this help message and exit
  --properties PROPERTIES, -p PROPERTIES
                        Extra Spark properties to set.
  --args ARGS           Quoted string of arguments to pass to the Hail script
                        being submitted.
$ cluster connect -h
usage: cluster connect [-h] [--port PORT] [--zone ZONE]
                       name
                       {notebook,nb,spark-ui,ui,spark-ui1,ui1,spark-ui2,ui2,spark-history,hist}

Connect to a running Dataproc cluster.

positional arguments:
  name                  Cluster name.
  {notebook,nb,spark-ui,ui,spark-ui1,ui1,spark-ui2,ui2,spark-history,hist}
                        Web service to launch.

optional arguments:
  -h, --help            show this help message and exit
  --port PORT, -p PORT  Local port to use for SSH tunnel to master node
                        (default: 10000).
  --zone ZONE, -z ZONE  Compute zone for Dataproc cluster (default: us-
                        central1-b).
$ cluster modify -h
usage: cluster modify [-h] [--jar JAR] [--zip ZIP] [--num-workers NUM_WORKERS]
                      [--num-preemptible-workers NUM_PREEMPTIBLE_WORKERS]
                      [--graceful-decommission-timeout GRACEFUL_DECOMMISSION_TIMEOUT]
                      [--max-idle MAX_IDLE] [--dry-run] [--zone ZONE]
                      name

Modify active Dataproc clusters.

positional arguments:
  name                  Cluster name.

optional arguments:
  -h, --help            show this help message and exit
  --jar JAR             New Hail JAR.
  --zip ZIP             New Hail ZIP.
  --num-workers NUM_WORKERS, --n-workers NUM_WORKERS, -w NUM_WORKERS
                        New number of worker machines (min. 2).
  --num-preemptible-workers NUM_PREEMPTIBLE_WORKERS, --n-pre-workers NUM_PREEMPTIBLE_WORKERS, -p NUM_PREEMPTIBLE_WORKERS
                        New number of preemptible worker machines.
  --graceful-decommission-timeout GRACEFUL_DECOMMISSION_TIMEOUT, --graceful GRACEFUL_DECOMMISSION_TIMEOUT
                        If set, cluster size downgrade will use graceful
                        decommissionnig with the given timeout (e.g. "60m").
  --max-idle MAX_IDLE   New maximum idle time before shutdown (e.g. "60m").
  --dry-run             Print gcloud dataproc command, but don't run it.
  --zone ZONE, -z ZONE  Compute zone for Dataproc cluster (default: us-
                        central1-b).
$ cluster diagnose -h
usage: cluster diagnose [-h] --dest DEST [--hail-log HAIL_LOG] [--overwrite]
                        [--no-diagnose] [--compress]
                        [--workers [WORKERS [WORKERS ...]]] [--take TAKE]
                        name

Diagnose problems in a Dataproc cluster.

positional arguments:
  name                  Cluster name.

optional arguments:
  -h, --help            show this help message and exit
  --dest DEST, -d DEST  Directory for diagnose output -- must be local.
  --hail-log HAIL_LOG, -l HAIL_LOG
                        Path for hail.log file.
  --overwrite           Delete dest directory before adding new files.
  --no-diagnose         Do not run gcloud dataproc clusters diagnose.
  --compress, -z        GZIP all files.
  --workers [WORKERS [WORKERS ...]]
                        Specific workers to get log files from.
  --take TAKE           Only download logs from the first N workers.
$ cluster stop -h
usage: cluster stop [-h] name

Shut down a Dataproc cluster.

positional arguments:
  name        Cluster name.

optional arguments:
  -h, --help  show this help message and exit
cluster list -h
usage: cluster list [-h]

List active Dataproc clusters.

optional arguments:
  -h, --help  show this help message and exit

Deploying

TWINE_USERNAME=username TWINE_PASSWORD=password make deploy

Creating the k8s Deployment Secrets

pypi-username and pypi-password are files containing credentials sufficiently privileged to publish cloudtools

kubectl create secret generic \
  ci-deploy-0-1--nealelab-cloudtools \
  --from-file=secrets/pypi-username \
  --from-file=secrets/pypi-password