Follow Logary at twitter: @logarylib
Chat and support and get support:
Logary is a high-performance, semantic logging, health and metrics library for .Net.
- Full support for Semantic Logging
- F# idiomatic code
- Using C#? Then
Logary.CSharp
is for you! - Looking for an F# alternative to
LibLog
? Jump toLogary.Facade
. - Never throws exceptions
- Low overhead logging – evaluate your Message only if a level is switched on
- Supports Hierarchical logging
- Add metrics to your service/app!
- A wide range of adapters and targets to choose from!
Created by Henrik Feldt, et al and sponsored by qvitoo – A.I. bookkeeping.
paket.dependencies:
source https://www.nuget.org/api/v2
nuget Logary
OR:
Install-Package Logary
- Logary v4
// NuGet: Install-Package Logary
string loggerId = "Logary.MyLogger";
using (var logary = Logary.Configuration.LogaryFactory.New(loggerId,
// You could define multiple targets. For HelloWorld, we use only console:
with => with.Target<Logary.Targets.TextWriter.Builder>(
"myFirstTarget",conf => conf.Target.WriteTo(System.Console.Out, System.Console.Error)
)).Result)
{
// Then let's log a message. For HelloWorld, we log a string:
var logger = logary.getLogger(Logary.PointNameModule.Parse(loggerId));
logger.logSimple(Logary.MessageModule.Event(Logary.LogLevel.Info, "Hello World!"));
System.Console.ReadLine();
}
open System
open NodaTime
open Hopac
open Logary
open Logary.Configuration
open Logary.Targets
open Logary.Metric
open Logary.Metrics
open System.Threading
[<EntryPoint>]
let main argv =
// the 'right' way to wait for SIGINT
use mre = new ManualResetEventSlim(false)
use sub = Console.CancelKeyPress.Subscribe (fun _ -> mre.Set())
// create a new Logary; save this instance somewhere "global" to your app/service
use logary =
// main factory-style API, returns IDisposable object
withLogaryManager "Logary.Examples.ConsoleApp" (
// output to the console
withTargets [
Console.create (Console.empty) "console"
] >>
// continuously log CPU stats
withMetrics [
MetricConf.create (Duration.FromMilliseconds 500L) "cpu" Sample.cpuTime
] >>
// "link" or "enable" the loggers to send everything to the configured target
withRules [
Rule.createForTarget "console"
]
// "compile" the configuration of targets, above
>> run
)
// "compile" the Logary instance
|> run
// Get a new logger. Also see Logging.getLoggerByName for statically getting it
let logger =
logary.getLogger (PointName [| "Logary"; "Samples"; "main" |])
// log something
Message.event Info "User logged in"
|> Message.setField "userName" "haf"
|> Logger.logSimple logger
// wait for sigint
mre.Wait()
0
Logary is itself a library for metrics and events with extensible inputs, adapters, and outputs, targets. Further, its services run as their own processes or in Suave.
- Logary – the main logging and metrics library. Your app depends on this.
- Logary.CSharp - C# facade that makes it more object oriented.
- Logary.Facade - single file to use in your F# library.
- Logary.Targets (from Logary into DBs and monitoring infra):
- DB – write logs into an arbitrary database: SQL Server, MySQL, PostgreSQL, sqlite and so on...
- DB.Migrations – uses FluentMigrator to create and then upgrade your DB between versions of Logary.
- Heka – ships Events and Metrics into Heka.
- InfluxDb – ships Events (as annotations) and Metrics into InfluxDb.
- Logstash – ships Events and Metrics into Logstash over ZeroMQ.
- Mailgun – ships Events over e-mail – send yourself warnings, errors and fatal errors via Mailgun.
- Riemann – ships Events (as a 1-valued gauage) and Metrics into Riemann.
- Shipper – ships Messages (Events/Metrics) to the
Router
orProxy
(seeRutta
above)
- Logary.Adapters (from X into Logary):
- CommonLogging – moar abstract logs into Logary.
- EventStore – EventStore logs into Logary.
- Facade – receiver for
Logary.Facade
logs. - FsSql – FsSql logs into Logary.
- Hawk - Logibit's Hawk logs into Logary.
- log4net – lets log4net log into Logary.
- Suave – ships Suave to logs into Logary.
- Topshelf – ships Topshelf logs into Logary.
- Logary.Metrics (from environment into Logary):
- WinPerfCounters – an API to access Windows Performance Counters.
- Logary.Services (stand-alone functionality):
- Rutta – a godly service of three:
- Ships Windows Performance Counters to the
Router
orProxy
, pushing via a PUB or PUSH ZeroMQ socket. - Proxies
Messages
between theShipper
and theRouter
, listening on a ZeroMQ XSUB/XPUB socket. - Routes
Messages
to Targets, listening on a ZeroMQ SUB or PULL socket.
Note that the shipping feature is its own target as well. Why? So that you can send logs in an efficient, high-performance manner between machines, without going through a potentially destructive mapping to another serialisation format or through another log router (Heka, Logstash) which also may change your data structure.
- Ships Windows Performance Counters to the
- SQLServerHealth – a service that keeps track of IO/latency performance for highly loaded SQL Servers
- SuaveReporter – a well-maintained Suave WebPart that you run as a part of your Suave server, that enables you to use logary-js.
- Rutta – a godly service of three:
The core type is Message
, which is the smallest unit you can log. It has
three kinds of point values: Event
, Gauge
and Derived
. An event is
normally a single line of code and carries a template string. E.g. "User
logged in" is an event's template string, and the Message
would have a field
"user" => "haf".
A point is a location where you send a metric or event from. Usually a module; in mature projects you also often have the name of the function that you log from as a part of the point name.
What you expect: "User logged in"
with a field "userName"
, "haf"
.
An instantaneous value. Imagine the needle showing the speed your car is going or a digital display showing the same instantaneous metric value of your car's speed.
An event is the most simple gauge of value 1.
A derived value from one or many gauges.
It means that you can have one Rule
/Logger
at level Info
for namespace
MyCompany
and another Rule
that matches loggers at MyCompany.Submodule
which allows Messages of level Debug
to go through.
A normal use-case for this is when you want to debug a particular module, by increasing the verbosity of its output (decreasing its log level).
Rules are 'optimistic' by default in that if at least one (or more) rules match a given Message
,
the most "open" will decide if it gets logged. So if you have two rules:
withRules [
Rule.createForTarget "console" Info
Rule.createForTarget "console" Debug
]
Then the Debug
level will "win" and show log output. More generally, a Rule
looks like this:
/// A rule specifies what messages a target should accept.
[<CustomEquality; CustomComparison>]
type Rule =
{ /// This is the regular expression that the 'path' must match to be loggable
hiera : Regex
/// This is the name of the target that this rule applies to.
target : PointName
/// This is the level at which the target will accept log lines. It's inclusive, so
/// anything below won't be accepted.
level : LogLevel
/// This is the accept filter that is before the message is passed to the logger
/// instance.
messageFilter : MessageFilter }
You can find the configuration in the module with the same name. The
Rule.empty
value is a null one that accepts all logs from anything.
The highest log level is Fatal
, which should be reserved for things that make
your service/process crash. Things like; "my disk is full and I'm a database
trying to start", or "I'm a 2-tier service built with a database, that I cannot
do any work without" warrant the Fatal
level.
At this level human beings are normally directly alerted.
The next level is Error
, which should be reserved for what you consider to be
edge-cases. E.g. if the data received from a socket is corrupt, or there was an
unhandled exception that you as a programmer did not have in your mental model
while writing the code. These events should be logged at the Error
level.
At this level human beings are normally directly alerted.
Warn
is for things like 100 failed password attempts within 5 minutes, for
one of your users, or a temporary network glitch while communicating with a
"resource" such as your database.
If these events for an anomaly persist over time, humans may be alerted.
At Info
level, I like to put events and gauges that measure company-relevant
stuff, like when users sign in, sign up, an integration has to perform a retry
or a service was started/restarted.
Debug
level is the default level and the work-horse. You normally log all
metrics at this level.
Verbose
is the level when you want that little extra. Not normally enabled.
Message fields may be interpolated (injected) into the template string of an
Event
. The word "template" is used, because the template string should not
vary between requests/users, but be a 'static' string, that can be hashed and
used for grouping in your logging infrastructure.
When reading legacy code, you'll often find code like:
logger.LogInfo("User {0} logged in", user.name)
In Logary, it could look like this:
Message.event Info "User logged in"
|> Message.setField "user" user.name
|> Message.setFieldFromObject "picture" user.bitmap
|> Logger.logSimple logger
Note how the event's template string is a compile time constant, but a field representing the user's name is added to the message.
By doing it this way, we can be sure that the structured log data remains structured.
The second function setFieldFromObject
is used when the compiler complains
that setField
finds no available overloads.
Let's say you have a module in your F# code that you want to log from. You can either get a logger like shown in Hello World, or you can do something like this:
module MyCompany.Sub.MyModule
open Logary
let logger = Logging.getCurrentLogger ()
let logInUser () =
// do something
Message.event Info "User logged in" |> Logger.logSimple logger
// do more stuff
If you want to name your logger with a specific name, you can use
Logging.getLoggerByName
instead. (This is different for the Facade file)
Similarly, sometimes you want to log from a class, and perhaps log some metrics too.
namespace MyCompany.Sub
open Logary
type Worker() =
let logger =
Logging.getLoggerByName "MyCompany.Sub.Worker"
let workAmount =
PointName [| "MyCompany"; "Sub"; "Worker"; "workDone" |]
let getAnswers (amount : float) =
// work work work
42 * amount
member x.Work (amount : float) =
// Initially, log how much work is to be done
// the only "supported" metric is a gauge (a value at an instant)
// and a derived metric (something you've computed from gauges)
Message.gauge workName (Float amount) |> Logger.logSimple logger
// do some work, logging how long it takes:
let everything = Logger.time logger (fun () -> getAnswers amount)
// return result
everything
In this example you learnt how to send arbitrary metrics to Logary (the gauge) and also how to time how long certain method calls take in your system.
Make it a habit to log these sort of gauges all over your code base while you write your code, to make it much easier to understand the system as it develops.
In fact, the more you do this, the more use you will have of Logary and of the dashboard you put up in Kibana (via Logstash) or Grafana (via InfluxDb). Put it up on a big TV in your office and you'll develop a second sense of whether the system is doing well or not, just from looking at the graphs.
Logary supports templating through FsMessageTemplates. All you have to do is write your templates like:
Message.event "Hi {user}!"
|> Message.setFieldValue "user" "haf"
This enables targets that support templating to output them 'filled out'.
Message Templates are a superset of standard .NET format strings, so any format string acceptable to string.Format() will also be correctly processed by FsMessageTemplates.
- Property names are written between
{
and}
braces - Braces can be escaped by doubling them, e.g.
{{
will be rendered as{
- Formats that use numeric property names, like
{0}
and{1}
exclusively, will be matched with theFormat
method's parameters by treating the property names as indexes; this is identical tostring.Format()
's behaviour - If any of the property names are non-numeric, then all property names will be
matched from left-to-right with the
Format
method's parameters - Property names may be prefixed with an optional operator,
@
or$
, to control how the property is serialised - Property names may be suffixed with an optional format, e.g.
:000
, to control how the property is rendered; these format strings behave exactly as their counterparts within thestring.Format()
syntax
In the previous section you saw how to create a gauge at a point in your code, but sometimes you need a metric that runs continuously over time.
This is possible because Logary contains code that can both tick your metric's computation function at a regular interval, and also has provisions for sending your metric other metrics, so that you can chain metrics together.
The ticker
is where you return Messages (Gauge or Derived values) to
keep track of how 'far along' you've reached, in order to avoid returning the same
messages multiple times.
The reducer
is what allows your metric to receive values from other metrics,
or from your system-at-large – like the above showcased Gauge logging.
Let's create a metric that just outputs a random walk. Start by opening the relevant namespaces and modules.
open System // access to Random
open Hopac // access to Job
open Logary // access to the Logary Data Model
open Logary.Metric // access the module functions for metrics
Now you can start thinking about what the metric should do and implement the
ticker : 'state -> 'state * Message list
:
// we'll assume the state is the Random instance and previously outputted
// value:
let ticker (rnd : Random, prevValue) =
// calculate the next value based on some heuristic or algorithm
let value =
let v = (rnd.NextDouble() - 0.5) * 0.3
if abs v < 0.03 then rnd.NextDouble() - 0.5
elif v + prevValue < -1. || v + prevValue > 1. then -v + prevValue
else v + prevValue
// create a new Message/Gauge metric with this value
let msg = Message.gauge pn (Float value)
// return the new state as well as the Messages you want to feed into
// Logary
(rnd, value), [ msg ]
Remember that you also needed to supply a reducer. In this case, the random walk metric doesn't have any input from other metrics, so let's just return the same state as we get in:
let reducer state = function
| _ ->
state
We also need to create some initial state, so that our metric has someplace to start computing:
let state =
let rnd = Random()
rnd, rnd.NextDouble()
Let's write it all up into a Metric that the consuming programmer is free to name as she pleases:
let randomWalk (pn : PointName) : Job<Metric> =
Metric.create reducer state ticker
Finally, we'll tell Logary about our metric and extend our "Hello World" sample with shipping metrics into InfluxDb:
// open ... like above
open System.Threading
[<EntryPoint>]
let main argv =
use mre = new ManualResetEventSlim(false)
use sub = Console.CancelKeyPress.Subscribe (fun _ -> mre.Set())
let influxConf =
InfluxDb.create (InfluxDb.InfluxDbConf.create(Uri "http://192.168.99.100:8086/write", "logary", batchSize = 500us))
(PointName.ofSingle "influxdb")
use logary =
withLogaryManager "Logary.Examples.MetricsWriter" (
withTargets [
Console.create (Console.empty) (PointName.ofSingle "console")
influxConf
]
>> withMetrics [
MetricConf.create (Duration.FromMilliseconds 500L) (PointName.ofSingle "henrik") Sample.randomWalk
]
>> withRules [
Rule.createForTarget (PointName.ofSingle "console")
Rule.createForTarget (PointName.ofSingle "influxdb")
]
>> withInternalTargets Info [
Console.create Console.empty (PointName.ofSingle "console")
]
>> run
)
|> run
mre.Wait()
0
Now when run, your metric will feed a random walk into InfluxDb listening on 192.168.99.100
.
The above example was self-sufficient, but you sometimes want to create derived metrics from events or gauges happening inside your own application.
This sample demonstrates how to create a derived metric from other simpler ones. It generates an exponentially weighted moving average from login gauges. The login gauges are sent one-by-one from the login code.
open Logary
open Logary.Metrics
open Hopac
let loginLoad : Job<Stream<Message>> = job {
let! counter = Counters.counter (PointName.ofSingle "logins")
let! ewma = Reservoirs.ewma (PointName.ofSingle "loginsEWMA")
do! ewma |> Metric.consume (Metric.tap counter)
return Metric.tapMessages ewma
}
By wrapping it up like this, you can drastically reduce the amount of code a given service sends by pre-computing much of it.
It's also a good sample of reservoir usage; a fancy name of saying that it's an algorithm that works on more than one gauge at a time, to produce a derived metric.
More documentation on derived metrics to follow! (including how to register them in Logary).
The above guide serves to explain how you use Logary in a service or application, but what if you have a library and don't want to take a dependency on a specific logging framework, or logging abstraction/indirection library ?
For this use-case, Logary provides F# facades that you can easily reference using Paket.
I've created a sample
library for you
to have a look at. Note how paket.references
specifies Facade.fs
as a file
dependency. The corresponding paket.dependencies
contains the entry below.
github logary/logary src/Logary.Facade/Facade.fs
In my Rakefile I have a small replacement script that sets the library's
namespace inside the referenced Facade.fs
file.
ruby -pi.bak -e \
"gsub(/namespace Logary.Facade/, 'namespace Libryy.Logging')" \
paket-files/logary/logary/src/Logary.Facade/Facade.fs
Or in FAKE style:
Target "LoggingFile" (fun _ ->
ReplaceInFiles [ "namespace Logary.Facade", "namespace Kafunk.Logging" ]
[ "paket-files/logary/logary/src/Logary.Facade/Facade.fs" ]
)
Now add to paket.references
(replace Logging
with a folder name of your choice,
or remove to have Paket not place the (single) file in a folder within the project):
File: Facade.fs Logging
Inside the library you use the logger just like you'd expect:
module Libryy.Core
// Note: this library has no reference to Logary proper!
open Libryy.Logging
open Libryy.Logging.Message
let work (logger : Logger) =
logger.warn (
eventX "Hey {user}!"
>> setField "user" "haf"
>> setSingleName "Libryy.Core.work"
>> setTimestamp 1470047883029045000L)
42
let simpleWork (logger : Logger) =
logger.logSimple (Message.event Error "Too simplistic")
43
Or statically:
module Libryy.Core
open Libryy.Logging
open Libryy.Logging.Message
let internal logger = Log.create "Libryy.Core"
let work () =
logger.info (eventX "Started work")
48
Any service/application that uses Libryy
does reference the Logary
and Facade
nugets, e.g.:
source https://www.nuget.org/api/v2
nuget Logary
nuget Logary.Adapters.Facade
The calling service/application then creates a new Logger
specifically for the
library that it aims to ship/extract logs from.
// opens ...
open Logary.Adapters.Facade
// let main ... =
use logary =
withLogaryManager "Servizz.Program" (
withTargets [ Console.create Console.empty (PointName.ofSingle "console") ]
>> withRules [ Rule.createForTarget (PointName.ofSingle "console") ])
|> run
// for the statics:
LogaryFacadeAdapter.initialise<Libryy.Logging.Logger> logary
// calls Librry.Logging.Global.initialise ( new logger inst )
// if you need a Logger instance:
let logger = logary.getLogger (PointName.ofSingle "Libryy")
let res = Libryy.Core.work (LoggerAdapter.createGeneric logger)
Outputs:
W 2016-08-01T10:38:03.0290450+00:00: Hey haf! [Libryy.Core.work]
user => "haf"
By default, the Facade has a global console logger that logs at Info
level.
The reason for this is that people normally expect output to come in the
'just installed' case, without hunting for \*.Logging.Global.initialise
first.
If you look inside Facade.fs
you'll find that LoggerEx
has error
, info
,
etc... as extension methods on the Logger
interface and that these are marked
internal to the library you're working inside.
error
, info
and so on are actually message factories that take a LogLevel
and return a Message
. By using them like this logger.error (eventX "templ")
,
you're only evaluating the constructor for Message
if and only if the level of
your logger is greater or equal to error
.
If we were to expand the point-free style (eta-expansion), it would look like
this: logger.error (fun level -> Message.eventX "templ" level)
, i.e. what you
pass to the error
extension method is a factory function, and the Message
module provides gauge
, event
and eventX
to create the different kinds of
messages.
Using the event-templates, you can pass more information to be logged:
with ex ->
logger.error (
eventX "Unhandled exception for {user}"
>> setField "user" user.name
>> addExn ex)
Note the placeholder {user}
for the user's name in the event template. By
default these will be printed to the console, and if you use
Logary.Adapters.Facade
you may use all the templating features of
MessageTemplates for plain-text targets.
Logary.Adapters.Facade
, the adapter for the library Facade, works by
generating a dynamic interface implementation at runtime. It doesn't work very
well if your library is being used from the F# interactive and all the
library's code, including the Logger
interface is only available in the
interactive state. You'll end up with a StackOverflowException
if you try
this.
However, the beauty is that when you're in the interactive, you can just let the library handle logging through the default Facade targets; i.e. you don't have to initialise Logary proper to use and read logs in the console, from the Facade.
- Facade.fs – the actual file that gets imported into your library.
- Facade unit tests – the unit tests for the facade file.
- Facade Adapter – the facade adapter (advanced code)
- Facade Adapter unit tests – the unit tests for the adapter, which are also good documentation on how to use it.
I've written a full RabbitMQ target that includes publisher confirms and durable messaging. It's fully usable from C# too (since C#-ists like RMQ), through the builder API.
Docs are in this code – and you'll find the code fairly readable.
let rmqConf =
{ RabbitMQ.empty with
appId = Some "Logary.ConsoleApp"
username = "appuser-12345"
password = "TopSecret1234"
tls = { RabbitMQ.TlsConf.certPath = "./certs/mycert.pfx"
RabbitMQ.TlsConf.certPassword = Some "AnotherSecret1243567" }
|> Some
compression = RabbitMQ.Compression.GZip
}
Then inside withTargets
:
RabbitMQ.create rmqConf (PointName.ofSingle "rabbitmq")
And the Rule for it:
Rule.createForTarget (PointName.ofSingle "rabbitmq")
Here's how you could configure the RabbitMQ target with C#:
.Target<Logary.Targets.RabbitMQ.Builder>(
"rabbitmq",
conf => conf.Target
.EnableTls("./cert/path.pfx", "TopSecret12345")
// many more knobs to tweak if you continue dotting
.Done()
)
Have a look at this example for more details.
Why Logary instead of one of the classic logging frameworks?
- You get semantic logging with Logary
- More targets to choose from
- Larger community of target writers
- Easier to write targets; they can crash and that's handled by Logary internally
- Support for zero-dependency usage through
Logary.Facade
- Better/more extensive
Rule
-based hierarchies - Targets can be decoupled from the network and Ack is a first-level primitive
- You get back an
Alt<Promise<unit>>
that you can use to synchronise your calling code for when the log message is required to be durable; you can't do this with NLog or log4net - There's an object model you can use from the calling code
- Logary is F#, so it's easier to keep bug-free relative to many other languages
- Logary doesn't keep static state around; easy to refactor, easy to extend
Rutta is software for shipping Messages between computers. Either from your own services or from Windows Performance Counters. This is useful if you want your services to ship all logs to a central point, before batching it and sending it off to InfluxDb. It's also useful if you want to firewall off a single subnet for certain processing and only have a single point ship logs and metrics.
- v1: Hard-coded supported target types. Initially we'll just support InfluxDB.
- v2: More configurable target configuration that supports any target.
This service can run in three modes; Shipper, Router and Proxy. Servers can be implemented using Hopac's lightweight servers. Communication is implemented using ZMQ and a binary serialisation format.
Bindings look may look like this:
Shipper -> Router
Shipper -> Proxy
Proxy -> Proxy
Proxy -> Router
On Windows you do ./rutta.exe -- --pub-to ...
- note the two extra dashes
before the parameter list. This is to avoid Topshelf munching the arguments
away.
Enables log shipping from hosts that are not directly connected to the router nor to InfluxDB.
Should be spawnable on Unix. Should be service-installable on Windows using TopShelf.
Shippers CONNECT PUSH sockets to the Router's PULL socket. See http://lists.zeromq.org/pipermail/zeromq-dev/2012-February/015917.html
./rutta --push-to tcp://headnode:6111
During network splits, the sending PUSH socket blocks.
./rutta --pub-to tcp://headnode:7111
During network splits, the sending XPUSH socket drops messages.
Proxies take inputs from Shippers or other Proxies that publish Messages using XPUB sockets:
./rutta --pub-to tcp://headnode:7111
The Proxy is run this way, by providing a XSUB socket binding and a XPUB socket binding:
./rutta --proxy tcp://10.42.0.1:7111 tcp://192.168.10.10:7112
During network splits, the receiving XSUB socket drops messages.
You can then connect to the Proxy with a Router that routes it to the final Target (like InfluxDB in this example):
./rutta --router-sub tcp://192.168.10.10:7113 \
--router-target influxdb://user:pass@host:8086/write?db=databaseName
During network splits, the sending XPUB socket drops messages.
Implements Fan-In using PULL or SUB of Messages from ZMQ. Forwards internally to a Target.
V1 only implements the InfluxDB target.
BINDs a PULL socket on a specified NIC/IP and PORT. Configures a single internal Target that pushes the received data.
./rutta --router tcp://192.168.10.10:7113 \
--router-target influxdb://user:pass@host:8086/write?db=databaseName
During network splits, the listening PULL socket blocks.
BINDs a SUB socket on a specified NIC/IP and POST. Configures a single internal Target that pushes the received data.
./rutta --router-sub tcp://192.168.10.10:7113 \
--router-target influxdb://user:pass@host:8086/write?db=databaseName
Serialisation for Rutta is done using FsPickler. Since FsPickler uses a binary format, it should be assumed to break for any given minor upgrade of FsPickler.
Each ZMQ message contains a Message (see DataModel.fs) in the binary form given by the serialiser chosen.
Are you interested in maintaining a target? Let me know or file a PR demonstrating your work.
Assuming you have Ruby 1.9.3 or later installed:
git clone --recursive -j8 git://github.com/logary/logary.git
cd logary
bundle
bundle exec rake
# first place your files here:
# tools/logary.pvk
# tools/logary.pvk.password
# tools/logary.spc
LOGARY_SIGN_ASSEMBLY=true bundle exec rake
# DEBUG=true LOGARY_SIGN_ASSEMBLY=true bundle exec rake
Clone it like above. Ensure you can build it. Open Logary.sln
. Make a change,
send a PR towards master. To balance the app.config files, try mono tools/paket.exe install --redirects --clean-redirects --createnewbindingfiles
- Create a new .net 4.5 class library in F#, under
target
and add that to Logary.sln. - Copy the code from Logary's
Target_Noop.fs
, which contains the basic structure. There are more docs in this file.
Logary is a production-grade logging and metrics library. We've also built targets that integrate with external paid services. These are listed here.
Learn how people use your app with the world's most advanced mobile & web analytics.
[Purchase today](mailto:henrik@haf.se?subject=Logary Mixpanel Target)
- Ship logs from your iOS, Android app
- Ship logs and handle user identification and unique-id tracking from web
- Use your own domain and server (over HTTPS)
- Logary listens on your server and forwards your events into Mixpanel
- Add granular server-side event filtering/enriching/correlation for better insights before shipping them onwards.
- Log web app usage even when Mixpanel is blocked client-side
We like open source – so in the purchase the reference source is provided so that it can be debugged like the rest of Logary.
This assumes you have an account at Mixpanel.
You can't rely on any one notification method for critical alerts. Get alert notifications via iOS & Android push, SMS, and phone calls; escalate automatically to team members if the alert is not acknowledged.
The Logary target for OpsGenie ensures that you can bring in your HealthChecks, Logging and Metrics into your daily operations.
- Connect using your own API key
- Make Logary events into new alerts
- Supports custom 'enrichers' to let you specify e.g. user, teams, recipients, tags, entity and notes, to name a few.
- Ready to use from both F# and C#
- Use derived metrics to create load-level alerts
- Stay on top of your infrastructure
- Avoid blacklisting your transactional e-mail service
This assumes you have an account at OpsGenie.
source https://www.nuget.org/api/v2
nuget Logary.Targets.Elmah.Io
OR:
Install-Package Logary.Targets.Elmah.Io
Configure elmah.io just like you would any normal target.
open Logary
open Logary.Configuration
open Logary.Targets
open Logary.Targets.ElmahIO
withTargets [
// ...
ElmahIO.create { logId = "GUID_HERE" } "elmah.io"
] >>
withRules [
// ...
Rule.createForTarget "elmah.io"
]
Or from C#:
// ...
.Target<ElmahIO.Builder>(
"elmah.io",
conf => conf.Target.WithLogId("GUID_HERE"))
You'll get the same view by logging this Message
:
type Tenant =
{ tenantId : string
permissions : string }
let exnMsg =
Message.event Error "Unhandled exception"
|> Message.setSimpleName "A.B.C"
|> Message.setFieldFromObject "tenant" { tenantId = "12345"; permissions = "RWX" }
|> Message.setContextFromMap (Map
[ "user", box (Map
[ "name", box "haf"
"id", box "deadbeef234567"
])
])
|> withException Message.addExn
This assumes you have an account at elmah.io.
Absolutely! You have two options;
-
Send a PR with your target that is of equivalent quality as the rest of the code-base, including documentation, code-doc, the C# builder API and a sample in this file. Then keep that code up-to-date when Logary evolves and your SaaS service changes its APIs.
-
Send me an e-mail and I'll target the target for you. Pricing: a small initial fee and then a monthly maintenance fee, you'll have a beautiful way of getting logs and metrics to your servers!
This is by far the easiest option and ensures that your Target is stable and easy to use for your customers. I'll even write some Markdown/HTML-formatted docs for your site about how to use Logary with your target.