Multi-omics characterization of 97 people living with HIV under antiretroviral therapy (lipidomcis, metabolomics, microbiome)
git clone https://github.com/neogilab/HIV_multiomics.git
cd HIV_multiomics
Download data from fishare (https://figshare.com/)
- Lipidome : [https://doi.org/10.6084/m9.figshare.21120268.v1]
- Metabolome : [https://doi.org/10.6084/m9.figshare.21120271.v1]
- Microbiome : [https://doi.org/10.6084/m9.figshare.21088066.v1]
-
A linux distribution
-
The following python modules
pip3 install leidenalg
pip3 install igraph
- R and R studio environment and following packages Open R and run
# install and load the package manager
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
bio_pkgs <- c("ComplexHeatmap", "ggalluvial", "ggplot2", "MOFA2",
"phyloseq", "vegan", "limma", "SNFtool")
# install:
BiocManager::install(bio_pkgs)
- Cytoscape software version 3.6.1 [https://github.com/cytoscape/cytoscape/releases/3.6.1/]
Rscript create_folders.R
- Files processing
preprocessing_input_files.Rmd
microbiome_processing.Rmd
- SNF
SNF_cross_validation.Rmd
Identify_HC_clusters_in_data.Rmd
- Metabolome / lipidome analysis
Merge_data_cluster.Rmd
Boxplot_lipid_classes.Rmd
LIMMA_microbiome_cocomo_2_HC_HIV.Rmd
LIMMA_microbiome_cocomo_2_HC.Rmd
- Microbiome analysis
Make_table_clinical_with_microbiome.Rmd
COCOMO_microbiome_preprocessing.Rmd
COCOMO_microbiome_preprocessing_without_HC.Rmd
figures_microbiome_extra.Rmd
preparing_lEfSe_input.Rmd
Microbiome_DGE_family.Rmd
Boxplots_top_microbes.Rmd
Statistic_tests_microbiome.Rmd
- Clinical
Statistics_COCOMO-microbiome_3.Rmd
- MDM
Microbiome_derived_metabolites.Rmd
association_clinical_items_MDM.Rmd
- MOFA
mofa_3_layers_4.Rmd
mofa_3_layers_downstream_analysis_4.Rmd
mofa_3_layers_MSEA.Rmd
- Figures
PCA_cocomo_3_layers_2.Rmd
Flora Mikaeloff