Skip to content

APMOLPRO is an interface between the APMO code and the electronic structure package MOLPRO

License

Notifications You must be signed in to change notification settings

nfaguirrec/apmolpro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

APMOLPRO

APMOLPRO is an interface between the APMO (Any Particle Molecular Orbital) code and the electronic structure package MOLPRO [https://www.molpro.net/]. The any particle molecular orbital APMO code [González et al., Int. J. Quantum Chem. 108, 1742 (2008)] implements the model where electrons and light nuclei are treated simultaneously at Hartree-Fock or second-order Möller-Plesset levels of theory. The APMO -MOLPRO interface allows to include high- level electronic correlation as implemented in the MOLPRO package and to describe nuclear quantum effects at Hartree-Fock level of theory with the APMO code.

The examples given in the paper [Aguirre et al. J. Chem. Phys. 138, 184113 (2013)] illustrate the use of this implementation on different model systems: 4 He2 dimer as a protype of a weakly bound van der Waals system; isotopomers of [He–H–He]+ molecule as an example of a hydrogen bonded system; and molecular hydrogen to compare with very accurate non-Born-Oppenheimer calculations.

Authors

Citing

To cite the code, please proceed as follows:

DOI

Flow diagram of the APMO-MOLPRO interface.

Terminal

Specifying the electron and nuclear basis set:

In this example, a basis aug-cc-pVQZ is chosen for the electrons of the hydrogen atoms and a 5sp even-tempered for the hydrogen nuclei.

basis={
  set ORBITAL
  H=aug-cc-pVQZ
  
  set NUCBASIS
  s,H,even,nprim=2,ratio=2.5,centre=33.7,dratio=0.8
  p,H,even,nprim=2,ratio=2.5,centre=33.7,dratio=0.8
  
  default ORBITAL
}
cartesian

Example of Molpro input file:

This example corresponds to the calculation of the molecule [HeHHe]+ where helium nuclei and the hydrogen nucleus are represented as quantum particles with an even-tempered basis set and a single 1s function respectively. CCSD(T)/aug-cc-pVQZ level of theory is used for the electronic part.

include apmolpro.com

APMOLPRO_maxit = 30
APMOLPRO_tol = 1e-6
APMOLPRO_hforb = 2100.2
APMOLPRO_dm = 21400.2

! First call to APMO to build the nuclear wave function
APMOLPRO_begin={
  {apmo
    species H_1,He_4,He_4
    nucbasis nucbasis,dirac,dirac
    save I,ICOUP
    save J,JCOUP
    save K,KIN
  }
}

! Updating the nuclear energy including the kinetic energy from the nuclei
APMOLPRO_enuc={
  {apmo
    update enuc H_1
  }
}

! Lets to relax the nuclei keeping frozen the electrons
APMOLPRO_nrelax={
  {apmo
    load den EDEN
    frozen e-
    species H_1,He_4,He_4
    nucbasis nucbasis,dirac,dirac
  }
}

! Electronic method to use
APMOLPRO_eMethod={
  ccsd(t)
}

! Nuclear-electron interaction method through the
! first-order reduced density matrix (record=21400.2)
APMOLPRO_cMethod={
  {ccsd
    core 0
    expec relax,dm
    expec dm
    dm $APMOLPRO_dm
    natorb $APMOLPRO_dm
  }
}

basis={
  set ORBITAL

  H=aug-cc-pVQZ
  He=aug-cc-pVQZ

  set NUCBASIS
  s,H,even,nprim=5,ratio=2.5,centre=33.7,dratio=0.8
  p,H,even,nprim=5,ratio=2.5,centre=33.7,dratio=0.8
  d,H,even,nprim=5,ratio=2.5,centre=33.7,dratio=0.8

  s, He, 30.0
  c, 1.1, 1.000000

  default ORBITAL
}
cartesian

r = 0.92491089

set charge=1
symmetry nosym
angstrom
geometry={
  H
  He  1  r
  He  1  r   2  180.0
}

{optg procedure=apmolpro
}

{property
  density $APMOLPRO_dm-10.0
  orbital $APMOLPRO_dm-10.0
  dm
  qm
}

{put molden HeTHeorb.molden
  orb $APMOLPRO_dm-10.0
}

Contour plots of the nuclear density for the different isotopic substitutions of the central hydrogen atom in the system [HeHHe]+. Terminal

Optimizing a nuclear basis set:

This example shows how to optimize variationally the exponent 1s of the Helium atoms in the He2 diatomic molecule by using the simplex method (geometry optimization included).

c1s = 200.0

basis={
  set ORBITAL
  He=aug-cc-pVTZ
  
  set NUCBASIS
  s He c1s
    c 1.1 1.00000
    
  default ORBITAL
}
cartesian

r = 2.99773304

symmetry nosym
angstrom
geometry={
  He
  He 1 r
}

optBasis={
  {optg procedure=apmolpro gradient=1e-5
  }
}

{minimize energy c1s
  method energy simplex,varscale=2,thresh=1e-6,proc=optBasis
}

Results of the nuclear basis set optimization (even-tempered) at CCSD(T){CCSD}:HF level of theory for the [HeHHe]+ molecule. Terminal

About

APMOLPRO is an interface between the APMO code and the electronic structure package MOLPRO

Resources

License

Stars

Watchers

Forks

Packages

No packages published