Skip to content

Bidirectional LSTM for dependency parsing in python: Disjoint predictions and complete classification accuracy in automated dependency parsing

Notifications You must be signed in to change notification settings

nicola-decao/bi-LSTM-dependency-parsing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bidirectional LSTM for dependency parsing

Disjoint predictions and complete classification accuracy in automated dependency parsing

A common approach for solving the dependency parsing problem is to apply the SHIFT-REDUCE algorithm in combination with neural networks outputting the desired transition and/or label at each iteration [1][2]. This study compares the performances of different models for labeled dependency parsing.

First, an unlabeled dependency parsing was implemented which consists of a bi-LSTM and an MLP on the top of it outputting the selected transition. This model was then extended by adding a two hidden layer MLP which takes the representations of the head and the tail of the transition and outputs one of 49 labels. This MLP was then altered to additionally accept as an input the parent of the current head. It was also built an other version that accepts the corresponding GloVe [3] word embeddings instead of LSTM output vectors. Finally it was created an architecture with a bi-LSTM followed by only one MLP, that predicts one of 99 possible labeled transitions out.

The purpose of this work is to evaluate such different architectures.

See report for further details.

Notes

Additional files are needed to run the project:

To run the project simply run python main.py.

References

[1] James Cross and Liang Huang. 2016. Incremental parsing with minimal features using bi-directional LSTM. CoRR, abs/1606.06406.

[2] Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim- ple and accurate dependency parsing using bidi- rectional LSTM feature representations. CoRR, abs/1603.04351.

[3] Jeffrey Pennington, Richard Socher, and Christo- pher D. Manning. Glove: Global vectors for word representation.

About

Bidirectional LSTM for dependency parsing in python: Disjoint predictions and complete classification accuracy in automated dependency parsing

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published