-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsample.py
272 lines (214 loc) · 10.5 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import logging
from collections import OrderedDict
from arekit.common.dataset.text_opinions.enums import EntityEndType
from arekit.common.dataset.text_opinions.helper import TextOpinionHelper
from arekit.common.experiment import const
from arekit.common.experiment.input.formatters.base_row import BaseRowsFormatter
from arekit.common.experiment.input.formatters.helper.balancing import SampleRowBalancerHelper
from arekit.common.experiment.input.providers.label.base import LabelProvider
from arekit.common.experiment.input.providers.label.multiple import MultipleLabelProvider
from arekit.common.experiment.input.providers.row_ids.multiple import MultipleIDProvider
from arekit.common.experiment.input.providers.text.single import BaseSingleTextProvider
from arekit.common.experiment.data_type import DataType
from arekit.common.labels.base import Label
from arekit.common.linked.text_opinions.wrapper import LinkedTextOpinionsWrapper
from arekit.common.news.parsed.base import ParsedNews
from arekit.common.news.parsed.term_position import TermPositionTypes
from arekit.common.text_opinions.base import TextOpinion
from arekit.contrib.bert.core.input.providers.label.binary import BinaryLabelProvider
from arekit.contrib.bert.core.input.providers.row_ids.binary import BinaryIDProvider
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class BaseSampleFormatter(BaseRowsFormatter):
"""
Custom Processor with the following fields
[id, label, text_a] -- for train
[id, text_a] -- for test
"""
def __init__(self, data_type, label_provider, text_provider, balance):
assert(isinstance(label_provider, LabelProvider))
assert(isinstance(text_provider, BaseSingleTextProvider))
assert(isinstance(balance, bool))
self._label_provider = label_provider
self.__text_provider = text_provider
self.__row_ids_provider = self.__create_row_ids_provider(label_provider)
self.__balance = balance
super(BaseSampleFormatter, self).__init__(data_type=data_type)
@staticmethod
def formatter_type_log_name():
return u"sample"
# region Private methods
@staticmethod
def __create_row_ids_provider(label_provider):
if isinstance(label_provider, BinaryLabelProvider):
return BinaryIDProvider()
if isinstance(label_provider, MultipleLabelProvider):
return MultipleIDProvider()
def __is_train(self):
return self._data_type == DataType.Train
def _get_columns_list_with_types(self):
"""
Composing df with the following columns:
[id, label, type, text_a]
"""
dtypes_list = super(BaseSampleFormatter, self)._get_columns_list_with_types()
dtypes_list.append((const.ID, unicode))
dtypes_list.append((const.NEWS_ID, 'int32'))
# insert labels
if self.__is_train():
dtypes_list.append((const.LABEL, 'int32'))
# insert text columns
for col_name in self.__text_provider.iter_columns():
dtypes_list.append((col_name, unicode))
# insert indices
dtypes_list.append((const.S_IND, 'int32'))
dtypes_list.append((const.T_IND, 'int32'))
return dtypes_list
@staticmethod
def __get_opinion_end_indices(parsed_news, text_opinion):
assert(isinstance(parsed_news, ParsedNews))
assert(isinstance(text_opinion, TextOpinion))
s_ind = parsed_news.get_entity_position(text_opinion.SourceId).get_index(
position_type=TermPositionTypes.IndexInSentence)
t_ind = parsed_news.get_entity_position(text_opinion.TargetId).get_index(
position_type=TermPositionTypes.IndexInSentence)
return (s_ind, t_ind)
@staticmethod
def _iter_sentence_terms(parsed_news, sentence_ind):
return parsed_news.iter_sentence_terms(sentence_index=sentence_ind, return_id=False)
def _fill_row_core(self, row, linked_wrap, index_in_linked, etalon_label,
parsed_news, sentence_ind, s_ind, t_ind):
def __assign_value(column, value):
row[column] = value
row[const.ID] = self.__row_ids_provider.create_sample_id(
linked_opinions=linked_wrap,
index_in_linked=index_in_linked,
label_scaler=self._label_provider.LabelScaler)
row[const.NEWS_ID] = linked_wrap.First.NewsID
expected_label = linked_wrap.get_linked_label()
if self.__is_train():
row[const.LABEL] = self._label_provider.calculate_output_uint_label(
expected_uint_label=self._label_provider.LabelScaler.label_to_uint(expected_label),
etalon_uint_label=self._label_provider.LabelScaler.label_to_uint(etalon_label))
self.__text_provider.add_text_in_row(
set_text_func=lambda column, value: __assign_value(column, value),
sentence_terms=list(self._iter_sentence_terms(parsed_news=parsed_news, sentence_ind=sentence_ind)),
s_ind=s_ind,
t_ind=t_ind,
expected_label=expected_label)
row[const.S_IND] = s_ind
row[const.T_IND] = t_ind
def __create_row(self, row, parsed_news, linked_wrap, index_in_linked, etalon_label, idle_mode):
"""
Composing row in following format:
[id, label, type, text_a]
returns: OrderedDict
row with key values
"""
assert(isinstance(row, OrderedDict))
assert(isinstance(parsed_news, ParsedNews))
assert(isinstance(linked_wrap, LinkedTextOpinionsWrapper))
assert(isinstance(index_in_linked, int))
assert(isinstance(etalon_label, Label))
assert(isinstance(idle_mode, bool))
if idle_mode:
return None
text_opinion = linked_wrap[index_in_linked]
s_ind, t_ind = self.__get_opinion_end_indices(parsed_news, text_opinion)
row.clear()
self._fill_row_core(row=row,
parsed_news=parsed_news,
sentence_ind=TextOpinionHelper.extract_entity_position(
parsed_news=parsed_news,
text_opinion=text_opinion,
end_type=EntityEndType.Source,
position_type=TermPositionTypes.SentenceIndex),
linked_wrap=linked_wrap,
index_in_linked=index_in_linked,
etalon_label=etalon_label,
s_ind=s_ind,
t_ind=t_ind)
return row
def __provide_rows(self, row_dict, parsed_news, linked_wrap, index_in_linked, idle_mode):
"""
Providing Rows depending on row_id_formatter type
"""
assert(isinstance(parsed_news, ParsedNews))
assert(isinstance(row_dict, OrderedDict))
assert(isinstance(linked_wrap, LinkedTextOpinionsWrapper))
origin = linked_wrap.First
if isinstance(self.__row_ids_provider, BinaryIDProvider):
"""
Enumerate all opinions as if it would be with the different label types.
"""
for label in self._label_provider.SupportedLabels:
yield self.__create_row(row=row_dict,
parsed_news=parsed_news,
linked_wrap=self.__copy_modified_linked_wrap(linked_wrap, label),
index_in_linked=index_in_linked,
# TODO. provide uint_label
etalon_label=origin.Sentiment,
idle_mode=idle_mode)
if isinstance(self.__row_ids_provider, MultipleIDProvider):
yield self.__create_row(row=row_dict,
parsed_news=parsed_news,
linked_wrap=linked_wrap,
index_in_linked=index_in_linked,
# TODO. provide uint_label
etalon_label=origin.Sentiment,
idle_mode=idle_mode)
@staticmethod
def __copy_modified_linked_wrap(linked_wrap, label):
assert(isinstance(linked_wrap, LinkedTextOpinionsWrapper))
linked_opinions = [o for o in linked_wrap]
copy = TextOpinion.create_copy(other=linked_opinions[0])
copy.set_label(label=label)
linked_opinions[0] = copy
return LinkedTextOpinionsWrapper(linked_text_opinions=linked_opinions)
def _provide_rows(self, parsed_news, linked_wrapper, idle_mode):
assert(isinstance(idle_mode, bool))
row_dict = OrderedDict()
for index_in_linked in xrange(len(linked_wrapper)):
rows_it = self.__provide_rows(
parsed_news=parsed_news,
row_dict=row_dict,
linked_wrap=linked_wrapper,
index_in_linked=index_in_linked,
idle_mode=idle_mode)
for row in rows_it:
yield row
# endregion
def _create_blank_df(self, size):
df = self._create_empty_df()
self._fast_init_df(df=df, rows_count=size)
return df
def _fast_init_df(self, df, rows_count):
df[self.ROW_ID] = range(rows_count)
df.set_index(self.ROW_ID, inplace=True)
def save(self, filepath, write_header):
assert(isinstance(filepath, unicode))
if self.__balance:
logger.info(u"Start balancing...")
balanced_df = SampleRowBalancerHelper.calculate_balanced_df(
df=self._df,
create_blank_df=lambda size: self._create_blank_df(size),
label_provider=self._label_provider)
logger.info(u"Balancing completed!")
self.dispose_dataframe()
self._df = balanced_df
logger.info(u"Saving... {shape}: {filepath}".format(
shape=self._df.shape, # self._df.shape,
filepath=filepath))
self._df.sort_values(by=[const.ID], ascending=True)
self._df.to_csv(filepath,
sep='\t',
encoding='utf-8',
columns=[c for c in self._df.columns if c != self.ROW_ID],
index=False,
float_format="%.0f",
compression='gzip',
header=write_header)
logger.info(u"Saving completed!")
logger.info(self._df.info())
def __len__(self):
return len(self._df.index)