Skip to content

Distributed words representations using Correspondence Analysis

Notifications You must be signed in to change notification settings

niitsuma/wordca

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Word Correspondence Analysis(WCA)

Distributed words epresentations using Correspondence Analysis

more description in https://arxiv.org/abs/1605.05087

demo

>>> pip3 install delayedsparse numba 
>>> git clone https://github.com/niitsuma/wordca
>>> cd wordca
>>> bash  demo.sh

Usage

CORPUS=text8
MIN_COUNT=5
WINDOW=24
VECTOR_SIZE=8000
bash tailcut.sh $CORPUS $MIN_COUNT $WINDOW $VECTOR_SIZE

wor2vec format result

text8-5-24-1-tailcut-8000.F.vec is the result in word2vec format. The computed result can be downloaded from http://www.suri.cs.okayama-u.ac.jp/~niitsuma/wordca/text8-5-24-1-tailcut-8000.F.vec.bz2

correspondence analysis result

text8-5-24-1-tailcut-8000.dca.npz contains various information about correspondence analysis. Plz see save and load function in https://github.com/niitsuma/delayedsparse/blob/master/delayedsparse/ca.py

License

@2018 Hirotaka Niitsuma.

You can use these codes olny for self evaluation. Cannot use these codes for commercial and academical use.

Author

Hirotaka Niitsuma.

@2018 Hirotaka Niitsuma.

About

Distributed words representations using Correspondence Analysis

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published