Distributed words epresentations using Correspondence Analysis
more description in https://arxiv.org/abs/1605.05087
>>> pip3 install delayedsparse numba
>>> git clone https://github.com/niitsuma/wordca
>>> cd wordca
>>> bash demo.sh
CORPUS=text8
MIN_COUNT=5
WINDOW=24
VECTOR_SIZE=8000
bash tailcut.sh $CORPUS $MIN_COUNT $WINDOW $VECTOR_SIZE
text8-5-24-1-tailcut-8000.F.vec is the result in word2vec format. The computed result can be downloaded from http://www.suri.cs.okayama-u.ac.jp/~niitsuma/wordca/text8-5-24-1-tailcut-8000.F.vec.bz2
text8-5-24-1-tailcut-8000.dca.npz contains various information about correspondence analysis. Plz see save and load function in https://github.com/niitsuma/delayedsparse/blob/master/delayedsparse/ca.py
@2018 Hirotaka Niitsuma.
You can use these codes olny for self evaluation. Cannot use these codes for commercial and academical use.
- pantent pending
- https://patentscope2.wipo.int/search/ja/detail.jsf?docId=JP225380312
- Japan patent office:patent number 2017-007741 , 2018-126430
Hirotaka Niitsuma.
@2018 Hirotaka Niitsuma.