Just to make it convenient for me and (possibly) for other folks I'll store some info about papers I've read. Moreover, I would like to use this repo as some kind of papers waiting-list, just to manage reading pipeline consistent.
- Generative Models
- Reinforcement Learning
- Uncertainty Estimation
- Bayesian Methods
- Natural Language Processing
- Computer Vision
[waiting][thesis5]
- Neural Density Estimation and Likelihood-free Inference
- George Papamakarios
University of Edinburgh 2019
- [Uncertainty Estimation]
[waiting][thesis4]
- Uncertainty Detection in Natural Language Texts
- Veronika Vincze
University of Szeged 2014
- [Natural Language Processing] [Uncertainty Estimation]
[waiting][thesis3]
- Bayesian Learning for Neural Networks
- Radford M. Neal
University of Toronto 1995
- [Bayesian Methods] [Uncertainty Estimation]
[waiting][thesis2]
- Inference and Learning in Deep Generative Models [pdf]
- Casper Kaae Sønderby
University of Copenhagen 2018
- [Generative Models]
[waiting][thesis1]
- Bayesian Methods for Adaptive Models [pdf]
- David Mackay
Caltech 1992
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper31]
- Image Transformer
- Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander Ku, Dustin Tran
ICML 2018
- [Computer Vision]
[waiting][paper28]
- Federated Machine Learning: Concept and Applications
- Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong
ACM TIST 2019
- [Federated Learning]
[waiting][paper41]
- Efficient GAN-Based Anomaly Detection
- Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, Vijay Ramaseshan Chandrasekhar
ICDM 2018
- [Uncertainty Estimation] [Generative Models]
[waiting][paper40]
- A Survey on GANs for Anomaly Detection
- Federico Di Mattia, Paolo Galeone, Michele De Simoni, Emanuele Ghelfi
arxiv 2019
- [Uncertainty Estimation] [Generative Models]
[waiting][thesis2]
- Inference and Learning in Deep Generative Models [pdf]
- Casper Kaae Sønderby
University of Copenhagen 2018
- [Generative Models]
[waiting][paper37]
- A Tutorial on Thompson Sampling
- Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen
arxiv 2017
- [Uncertainty Estimation] [Reinforcement Learning]
[waiting][paper24]
- Exploration by Random Network Distillation [pdf]
- Yuri Burda, Harrison Edwards, Amos Storkey, Oleg Klimov
ICLR 2019
- [Uncertainty Estimation] [Reinforcement Learning]
[waiting][paper9]
- Deep Exploration via Randomized Value Functions [pdf]
- Ian Osband, Benjamin Van Roy, Daniel Russo, Zheng Wen
JMLR 2019
- [Reinforcement Learning] [Uncertatinty Estimation]
[done][paper58]
- Normalizing Flows: An Introduction and Review of Current Methods
- Ivan Kobyzev, Simon J.D. Prince, Marcus A. Brubaker
TPAMI 2020
- [Uncertainty Estimation]
[done][paper57]
- Uncertainty-Aware Deep Classifiers using Generative Models
- Murat Sensoy, Lance Kaplan, Federico Cerutti, Maryam Saleki
AAAI 2020
- [Uncertainty Estimation]
[done][paper56]
- Deep Ensembles: A Loss Landscape Perspective
- Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
arXiv 2019
- [Uncertainty Estimation]
[28-07-2020][paper54]
- Concrete Dropout
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Uncertainty Estimation]
[28-07-2020][paper53]
- Uncertainty-guided Continual Learning with Bayesian Neural Networks
- Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
ICLR 2020
- [Uncertainty Estimation]
[27-07-2020][paper49]
- Epistemic Uncertainty Sampling
- Vu-Linh Nguyen, Sébastien Destercke, Eyke Hüllermeier
ICDS 2019
- [Uncertainty Estimation]
[22-07-2020][paper48]
- Leveraging uncertainty information from deep neural networks for disease detection
- Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, Siegfried Wahl
Nature 2017
- [Uncertainty Estimation]
[22-07-2020][paper47]
- Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
- Tanya Nair, Doina Precup, Douglas L. Arnold, Tal Arbel
MICCAI 2018
- [Uncertainty Estimation]
[22-07-2020][paper46]
- Importance of being uncertain
- Martin Krzywinski, Naomi Altman
Nature 2013
- [Uncertainty Estimation]
[waiting][paper44]
- Concrete Dropout
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Bayesian Methods] [Uncertainty Estimation]
[waiting][paper43] [pdf]
- Uncertainty-guided Continual Learning with Bayesian Neural Networks
- Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
ICLR 2020
- [Bayesian Methods]
[waiting][paper41]
- Efficient GAN-Based Anomaly Detection
- Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, Vijay Ramaseshan Chandrasekhar
ICDM 2018
- [Uncertainty Estimation] [Generative Models]
[waiting][paper40]
- A Survey on GANs for Anomaly Detection
- Federico Di Mattia, Paolo Galeone, Michele De Simoni, Emanuele Ghelfi
arxiv 2019
- [Uncertainty Estimation] [Generative Models]
[waiting][paper38]
- AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
- Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, Balaji Lakshminarayanan
ICLR 2020
- [Uncertainty Estimation]
[waiting][paper37]
- A Tutorial on Thompson Sampling
- Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen
arxiv 2017
- [Uncertainty Estimation] [Reinforcement Learning]
[waiting][paper36]
- Uncertainty in Structured Prediction
- Andrey Malinin, Mark Gales
arxiv 2019
- [Uncertainty Estimation]
[waiting][paper35]
- Quantifying Uncertainties in Natural Language Processing Tasks
- Yijun Xiao, William Yang Wang
AAAI 2019
- [Natural Language Processing] [Uncertainty Estimation]
[waiting][thesis5]
- Neural Density Estimation and Likelihood-free Inference
- George Papamakarios
University of Edinburgh 2019
- [Uncertainty Estimation]
[waiting][thesis4]
- Uncertainty Detection in Natural Language Texts
- Veronika Vincze
University of Szeged 2014
- [Natural Language Processing] [Uncertainty Estimation]
[waiting][paper27]
- Ensemble Distribution Distillation [pdf]
- Andrey Malinin, Bruno Mlodozeniec, Mark Gales
ICLR 2020
- [Uncertainty Estimation]
[waiting][paper24]
- Exploration by Random Network Distillation [pdf]
- Yuri Burda, Harrison Edwards, Amos Storkey, Oleg Klimov
ICLR 2019
- [Uncertainty Estimation] [Reinforcement Learning]
[waiting][paper23]
- Concrete Dropout [pdf]
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Uncertainty Estimation] [Bayesian Methods]
[waiting][paper22]
- Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles [pdf]
- Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan, David Crandall, Dhruv Batra
NIPS 2016
- [Uncertainty Estimation]
[waiting][paper21]
- Accurate Uncertainty Estimation and Decomposition in Ensemble Learning [pdf]
- Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, Brent Coull
NIPS 2019
- [Uncertainty Estimation]
[waiting][paper20]
- Direct Uncertainty Prediction for Medical Second Opinions [pdf]
- Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Robert Kleinberg, Sendhil Mullainathan, Jon Kleinberg
ICML 2019
- [Uncertainty Estimation]
[waiting][paper19]
- Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
- Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön
CVPR 2020
- [Depth Estimation] [Uncertainty Estimation]
[waiting][paper16]
- On the uncertainty of self-supervised monocular depth estimation [[pdf]](On the uncertainty of self-supervised monocular depth estimation)
- Matteo Poggi Filippo Aleotti Fabio Tosi Stefano Mattoccia
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper15]
- Scalable Uncertainty for Computer Vision with Functional Variational Inference [pdf]
- Eduardo D C Carvalho, Ronald Clark, Andrea Nicastro∗ Paul H J Kelly
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper14]
- Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End [pdf]
- Abdelrahman Eldesokey, Michael Felsberg, Karl Holmquist, Michael Persson
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper13]
- Deep Ensembles: A Loss Landscape Perspective
- Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
arxiv 2019
- [Uncertatinty Estimation]
[waiting][paper12]
- A Simple Baseline for Bayesian Uncertainty in Deep Learning
- Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, Andrew Gordon Wilson
NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][thesis3]
- Bayesian Learning for Neural Networks
- Radford M. Neal
University of Toronto 1995
- [Bayesian Methods] [Uncertainty Estimation]
[waiting][thesis1]
- Bayesian Methods for Adaptive Models [pdf]
- David Mackay
Caltech 1992
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper11]
- Bayesian Learning via Stochastic Gradient Langevin Dynamics [pdf]
- Max Welling, Yee Whye Teh
ICML 2011
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper10]
- Practical Deep Learning with Bayesian Principles [pdf]
- Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota, Mohammad Emtiyaz Khan
NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper9]
- Deep Exploration via Randomized Value Functions [pdf]
- Ian Osband, Benjamin Van Roy, Daniel Russo, Zheng Wen
JMLR 2019
- [Reinforcement Learning] [Uncertatinty Estimation]
[waiting][paper8]
- On the Validity of Bayesian Neural Networks for Uncertainty Estimation [pds]
- John Mitros, Brian Mac Namee
AICS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[24-06-2020][paper7]
- On Calibration of Modern Neural Networks
- Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger
ICLR 2017
- [Uncertatinty Estimation]
[waiting][paper6]
- BatchEnsemble: an Alternative Approach to Efficient Ensemble and Lifelong Learning
- Yeming Wen, Dustin Tran, Jimmy Ba
ICLR 2020
- [Uncertatinty Estimation]
[10-06-2020][paper5]
- Weight Uncertainty in Neural Networks
- Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra
ICML 2015
- [Bayesian Methods] [Uncertatinty Estimation]
[10-06-2020][paper4]
- Bayesian Methods for Neural Networks [pdf]
- Christopher M. Bishop
None
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper3]
- Neural Tangents: Fast and Easy Infinite Neural Networks in Python [pdf] [video]
- Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, Samuel S. Schoenholz
05-12-2019, ICML 2020
- [Bayesian Methods] [Uncertatinty Estimation] [Gaussian Processes]
[waiting][paper2]
- Bayesian Layers: A Module for Neural Network Uncertainty [pdf]
- Dustin Tran, Mike Dusenberry, Mark van der Wilk, Danijar Hafner
05-03-2019, NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper52]
- Practical Variational Inference for Neural Networks
- Alex Graves
NIPS 2011
- [Bayesian Methods]
[waiting][paper45]
- Variational Inference: A Review for Statisticians
- David M. Blei, Alp Kucukelbir, Jon D. McAuliffe
JASA 2017
- [Bayesian Methods]
[waiting][paper44]
- Concrete Dropout
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Bayesian Methods] [Uncertainty Estimation]
[waiting][paper43] [pdf]
- Uncertainty-guided Continual Learning with Bayesian Neural Networks
- Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
ICLR 2020
- [Bayesian Methods]
[waiting][paper42] [pdf]
- Explaining the Gibbs Sampler
- George Casella, Edward I. George
TAS 1992
- [Bayesian Methods]
[waiting][paper34]
- Normalizing Flows for Probabilistic Modeling and Inference
- George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan
review article 2019
- [Bayesian Methods]
[waiting][paper23]
- Concrete Dropout [pdf]
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Uncertainty Estimation] [Bayesian Methods]
[waiting][paper17]
- Multiplicative Normalizing Flows for Variational Bayesian Neural Networks [pdf]
- Christos Louizos, Max Welling
ICML 2017
- [Bayesian Methods]
[waiting][paper12]
- A Simple Baseline for Bayesian Uncertainty in Deep Learning
- Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, Andrew Gordon Wilson
NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][thesis3]
- Bayesian Learning for Neural Networks
- Radford M. Neal
University of Toronto 1995
- [Bayesian Methods] [Uncertainty Estimation]
[waiting][thesis1]
- Bayesian Methods for Adaptive Models [pdf]
- David Mackay
Caltech 1992
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper11]
- Bayesian Learning via Stochastic Gradient Langevin Dynamics [pdf]
- Max Welling, Yee Whye Teh
ICML 2011
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper10]
- Practical Deep Learning with Bayesian Principles [pdf]
- Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota, Mohammad Emtiyaz Khan
NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper8]
- On the Validity of Bayesian Neural Networks for Uncertainty Estimation [pdf]
- John Mitros, Brian Mac Namee
AICS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper5]
- Weight Uncertainty in Neural Networks
- Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra
ICML 2015
- [Bayesian Methods] [Uncertatinty Estimation]
[10-06-2020][paper4]
- Bayesian Methods for Neural Networks [pdf]
- Christopher M. Bishop
None
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper3]
- Neural Tangents: Fast and Easy Infinite Neural Networks in Python [pdf] [video]
- Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, Samuel S. Schoenholz
05-12-2019, ICML 2020
- [Bayesian Methods] [Uncertatinty Estimation] [Gaussian Processes]
[waiting][paper2]
- Bayesian Layers: A Module for Neural Network Uncertainty [pdf]
- Dustin Tran, Mike Dusenberry, Mark van der Wilk, Danijar Hafner
05-03-2019, NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[done][paper55]
- Improving language understanding by generative pre-training
- Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever
?
- [Natural Language Processing]
[done][paper54]
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
ACL 2019
- [Natural Language Processing]
[waiting][paper35]
- Quantifying Uncertainties in Natural Language Processing Tasks
- Yijun Xiao, William Yang Wang
AAAI 2019
- [Natural Language Processing] [Uncertainty Estimation]
[waiting][paper4]
- Uncertainty Detection in Natural Language Texts
- Veronika Vincze
University of Szeged 2014
- [Natural Language Processing] [Uncertainty Estimation]
[waiting][paper32]
- Neural Machine Translation of Rare Words with Subword Units
- Rico Sennrich, Barry Haddow, Alexandra Birch
ACL 2016
- [Natural Language Processing]
[waiting][paper30]
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
ACL 2017
- [Natural Language Processing]
[waiting][paper29]
- Attention Is All You Need
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
NIPS 2017
- [Natural Language Processing]
[waiting][paper1]
- Unsupervised Translation of Programming Languages [pdf]
- Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, Guillaume Lample
05-06-2020, arxiv
- [Natural Language Processing]
[waiting][paper18]
- Deep Gaussian Processes [pdf]
- Andreas C. Damianou, Neil D. Lawrence
AISTATS 2013
- [Gaussian Processes]
[waiting][paper3]
- Neural Tangents: Fast and Easy Infinite Neural Networks in Python [pdf] [video]
- Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, Samuel S. Schoenholz
05-12-2019, ICML 2020
- [Bayesian Methods] [Uncertatinty Estimation] [Gaussian Processes]
[waiting][paper19]
- Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
- Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön
CVPR 2020
- [Depth Estimation] [Uncertainty Estimation]
[waiting][paper16]
- On the uncertainty of self-supervised monocular depth estimation [[pdf]](On the uncertainty of self-supervised monocular depth estimation)
- Matteo Poggi Filippo Aleotti Fabio Tosi Stefano Mattoccia
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper15]
- Scalable Uncertainty for Computer Vision with Functional Variational Inference [pdf]
- Eduardo D C Carvalho, Ronald Clark, Andrea Nicastro∗ Paul H J Kelly
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper14]
- Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End [pdf]
- Abdelrahman Eldesokey, Michael Felsberg, Karl Holmquist, Michael Persson
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[22-07-2020][paper50]
- A Sequential Algorithm for Training Text Classifiers
- David D. Lewis, William A. Gale
ICDS 2019
- [Uncertainty Estimation]
Place for papers, that I don't really want to categorize ;)
[waiting][paper51]
- Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
- Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse
ICLR 2018
- [Random]
[waiting][paper39]
- Pointer Networks
- Oriol Vinyals, Meire Fortunato, Navdeep Jaitly
NIPS 2015
- [Random]
[waiting][paper33]
- Layer Normalization
- Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton
? 2016
- [Random]
[done][paper58]
- Normalizing Flows: An Introduction and Review of Current Methods
- Ivan Kobyzev, Simon J.D. Prince, Marcus A. Brubaker
TPAMI 2020
- [Uncertainty Estimation]
[done][paper57]
- Uncertainty-Aware Deep Classifiers using Generative Models
- Murat Sensoy, Lance Kaplan, Federico Cerutti, Maryam Saleki
AAAI 2020
- [Uncertainty Estimation]
[done][paper56]
- Deep Ensembles: A Loss Landscape Perspective
- Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
arXiv 2019
- [Uncertainty Estimation]
[done][paper55]
- Improving language understanding by generative pre-training
- Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever
?
- [Natural Language Processing]
[done][paper54]
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
ACL 2019
- [Natural Language Processing]
[done][paper54]
- Concrete Dropout
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Uncertainty Estimation]
[done][paper53]
- Uncertainty-guided Continual Learning with Bayesian Neural Networks
- Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
ICLR 2020
- [Uncertainty Estimation]
[waiting][paper52]
- Practical Variational Inference for Neural Networks
- Alex Graves
NIPS 2011
- [Bayesian Methods]
[waiting][paper51]
- Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
- Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse
ICLR 2018
- [Random]
[done][paper50]
- A Sequential Algorithm for Training Text Classifiers
- David D. Lewis, William A. Gale
ICDS 2019
- [Uncertainty Estimation]
[22-07-2020][paper49]
- Epistemic Uncertainty Sampling
- Vu-Linh Nguyen, Sébastien Destercke, Eyke Hüllermeier
ICDS 2019
- [Uncertainty Estimation]
[22-07-2020][paper48]
- Leveraging uncertainty information from deep neural networks for disease detection
- Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, Siegfried Wahl
Nature 2017
- [Uncertainty Estimation]
[22-07-2020][paper47]
- Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
- Tanya Nair, Doina Precup, Douglas L. Arnold, Tal Arbel
MICCAI 2018
- [Uncertainty Estimation]
[22-07-2020][paper46]
- Importance of being uncertain
- Martin Krzywinski, Naomi Altman
Nature 2013
- [Uncertainty Estimation]
[waiting][paper45]
- Variational Inference: A Review for Statisticians
- David M. Blei, Alp Kucukelbir, Jon D. McAuliffe
JASA 2017
- [Bayesian Methods]
[waiting][paper44]
- Concrete Dropout
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Bayesian Methods] [Uncertainty Estimation]
[waiting][paper43] [pdf]
- Uncertainty-guided Continual Learning with Bayesian Neural Networks
- Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
ICLR 2020
- [Bayesian Methods]
[waiting][paper42] [pdf]
- Explaining the Gibbs Sampler
- George Casella, Edward I. George
TAS 1992
- [Bayesian Methods]
[waiting][paper41]
- Efficient GAN-Based Anomaly Detection
- Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, Vijay Ramaseshan Chandrasekhar
ICDM 2018
- [Uncertainty Estimation] [Generative Models]
[waiting][paper40]
- A Survey on GANs for Anomaly Detection
- Federico Di Mattia, Paolo Galeone, Michele De Simoni, Emanuele Ghelfi
arxiv 2019
- [Uncertainty Estimation] [Generative Models]
[waiting][paper39]
- Pointer Networks
- Oriol Vinyals, Meire Fortunato, Navdeep Jaitly
NIPS 2015
- [Random]
[waiting][paper38]
- AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
- Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, Balaji Lakshminarayanan
ICLR 2020
- [Uncertainty Estimation]
[waiting][paper37]
- A Tutorial on Thompson Sampling
- Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen
arxiv 2017
- [Uncertainty Estimation] [Reinforcement Learning]
[waiting][paper36]
- Uncertainty in Structured Prediction
- Andrey Malinin, Mark Gales
arxiv 2019
- [Uncertainty Estimation]
[waiting][paper35]
- Quantifying Uncertainties in Natural Language Processing Tasks
- Yijun Xiao, William Yang Wang
AAAI 2019
- [Natural Language Processing] [Uncertainty Estimation]
[waiting][paper34]
- Normalizing Flows for Probabilistic Modeling and Inference
- George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan
review article 2019
- [Bayesian Methods]
[waiting][paper33]
- Layer Normalization
- Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton
? 2016
- [Random]
[waiting][paper32]
- Neural Machine Translation of Rare Words with Subword Units
- Rico Sennrich, Barry Haddow, Alexandra Birch
ACL 2016
- [Natural Language Processing]
[waiting][paper31]
- Image Transformer
- Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander Ku, Dustin Tran
ICML 2018
- [Computer Vision]
[waiting][paper30]
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
ACL 2017
- [Natural Language Processing]
[waiting][paper29]
- Attention Is All You Need
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
NIPS 2017
- [Natural Language Processing]
[waiting][paper28]
- Federated Machine Learning: Concept and Applications
- Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong
ACM TIST 2019
- [Federated Learning]
[waiting][paper27]
- Ensemble Distribution Distillation [pdf]
- Andrey Malinin, Bruno Mlodozeniec, Mark Gales
ICLR 2020
- [Uncertainty Estimation]
[waiting][paper26]
- Domain-Adaptive Multibranch Networks
- Bermúdez Chacón, Róger ; Salzmann, Mathieu ; Fua, Pascal
ICLR 2020
- [[Domain Adaptation]]
[waiting][paper25]
- DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection [pdf]
- Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, Aythami Morales and Javier Ortega-Garcia
arxiv
- [[DeepFakes]]
[waiting][paper24]
- Exploration by Random Network Distillation [pdf]
- Yuri Burda, Harrison Edwards, Amos Storkey, Oleg Klimov
ICLR 2019
- [Uncertainty Estimation] [Reinforcement Learning]
[waiting][paper23]
- Concrete Dropout [pdf]
- Yarin Gal, Jiri Hron, Alex Kendall
NIPS 2017
- [Uncertainty Estimation] [Bayesian Methods]
[waiting][paper22]
- Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles [pdf]
- Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan, David Crandall, Dhruv Batra
NIPS 2016
- [Uncertainty Estimation]
[waiting][paper21]
- Accurate Uncertainty Estimation and Decomposition in Ensemble Learning [pdf]
- Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, Brent Coull
NIPS 2019
- [Uncertainty Estimation]
[waiting][paper20]
- Direct Uncertainty Prediction for Medical Second Opinions [pdf]
- Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Robert Kleinberg, Sendhil Mullainathan, Jon Kleinberg
ICML 2019
- [Uncertainty Estimation]
[waiting][paper19]
- Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
- Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön
CVPR 2020
- [Depth Estimation] [Uncertainty Estimation]
[waiting][paper18]
- Deep Gaussian Processes [pdf]
- Andreas C. Damianou, Neil D. Lawrence
AISTATS 2013
- [Gaussian Processes]
[waiting][paper17]
- Multiplicative Normalizing Flows for Variational Bayesian Neural Networks [pdf]
- Christos Louizos, Max Welling
ICML 2017
- [Bayesian Methods]
[waiting][paper16]
- On the uncertainty of self-supervised monocular depth estimation [[pdf]](On the uncertainty of self-supervised monocular depth estimation)
- Matteo Poggi Filippo Aleotti Fabio Tosi Stefano Mattoccia
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper15]
- Scalable Uncertainty for Computer Vision with Functional Variational Inference [pdf]
- Eduardo D C Carvalho, Ronald Clark, Andrea Nicastro∗ Paul H J Kelly
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper14]
- Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End [pdf]
- Abdelrahman Eldesokey, Michael Felsberg, Karl Holmquist, Michael Persson
CVPR 2020
- [Uncertatinty Estimation] [Depth Estimation]
[waiting][paper13]
- Deep Ensembles: A Loss Landscape Perspective
- Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
arxiv 2019
- [Uncertatinty Estimation]
[waiting][paper12]
- A Simple Baseline for Bayesian Uncertainty in Deep Learning
- Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, Andrew Gordon Wilson
NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper11]
- Bayesian Learning via Stochastic Gradient Langevin Dynamics [pdf]
- Max Welling, Yee Whye Teh
ICML 2011
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper10]
- Practical Deep Learning with Bayesian Principles [pdf]
- Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota, Mohammad Emtiyaz Khan
NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper9]
- Deep Exploration via Randomized Value Functions [pdf]
- Ian Osband, Benjamin Van Roy, Daniel Russo, Zheng Wen
JMLR 2019
- [Reinforcement Learning] [Uncertatinty Estimation]
[waiting][paper8]
- On the Validity of Bayesian Neural Networks for Uncertainty Estimation [pdf]
- John Mitros, Brian Mac Namee
AICS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[24-06-2020][paper7]
- On Calibration of Modern Neural Networks
- Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger
ICLR 2017
- [Uncertatinty Estimation]
[14-06-2020][paper6]
- BatchEnsemble: an Alternative Approach to Efficient Ensemble and Lifelong Learning
- Yeming Wen, Dustin Tran, Jimmy Ba
ICLR 2020
- [Uncertatinty Estimation]
[10-06-2020][paper5]
- Weight Uncertainty in Neural Networks
- Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra
ICML 2015
- [Bayesian Methods] [Uncertatinty Estimation]
[10-06-2020][paper4]
- Bayesian Methods for Neural Networks [pdf]
- Christopher M. Bishop
None
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper3]
- Neural Tangents: Fast and Easy Infinite Neural Networks in Python [pdf] [video]
- Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, Samuel S. Schoenholz
05-12-2019, ICML 2020
- [Bayesian Methods] [Uncertatinty Estimation] [Gaussian Processes]
[waiting][paper2]
- Bayesian Layers: A Module for Neural Network Uncertainty [pdf]
- Dustin Tran, Mike Dusenberry, Mark van der Wilk, Danijar Hafner
05-03-2019, NIPS 2019
- [Bayesian Methods] [Uncertatinty Estimation]
[waiting][paper1]
- Unsupervised Translation of Programming Languages [pdf]
- Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, Guillaume Lample
05-06-2020, arxiv
- [Natural Language Processing]