Skip to content

here I store some papers I've enjoyed to read (should update this at least every week, but sometimes I'm too lazy c:)

Notifications You must be signed in to change notification settings

nikitadurasov/papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About

Just to make it convenient for me and (possibly) for other folks I'll store some info about papers I've read. Moreover, I would like to use this repo as some kind of papers waiting-list, just to manage reading pipeline consistent.

Content


PhD Theses

[waiting][thesis5]

  • Neural Density Estimation and Likelihood-free Inference
  • George Papamakarios
  • University of Edinburgh 2019
  • [Uncertainty Estimation]

[waiting][thesis4]

[waiting][thesis3]

[waiting][thesis2]

  • Inference and Learning in Deep Generative Models [pdf]
  • Casper Kaae Sønderby
  • University of Copenhagen 2018
  • [Generative Models]

[waiting][thesis1]

Computer Vision

[waiting][paper31]

  • Image Transformer
  • Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander Ku, Dustin Tran
  • ICML 2018
  • [Computer Vision]

Federated Learning

[waiting][paper28]

  • Federated Machine Learning: Concept and Applications
  • Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong
  • ACM TIST 2019
  • [Federated Learning]

Generative Models

[waiting][paper41]

[waiting][paper40]

[waiting][thesis2]

  • Inference and Learning in Deep Generative Models [pdf]
  • Casper Kaae Sønderby
  • University of Copenhagen 2018
  • [Generative Models]

Reinforcement Learning

[waiting][paper37]

[waiting][paper24]

[waiting][paper9]

Uncertainty Estimation

[done][paper58]

  • Normalizing Flows: An Introduction and Review of Current Methods
  • Ivan Kobyzev, Simon J.D. Prince, Marcus A. Brubaker
  • TPAMI 2020
  • [Uncertainty Estimation]

[done][paper57]

  • Uncertainty-Aware Deep Classifiers using Generative Models
  • Murat Sensoy, Lance Kaplan, Federico Cerutti, Maryam Saleki
  • AAAI 2020
  • [Uncertainty Estimation]

[done][paper56]

  • Deep Ensembles: A Loss Landscape Perspective
  • Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
  • arXiv 2019
  • [Uncertainty Estimation]

[28-07-2020][paper54]

[28-07-2020][paper53]

  • Uncertainty-guided Continual Learning with Bayesian Neural Networks
  • Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
  • ICLR 2020
  • [Uncertainty Estimation]

[27-07-2020][paper49]

  • Epistemic Uncertainty Sampling
  • Vu-Linh Nguyen, Sébastien Destercke, Eyke Hüllermeier
  • ICDS 2019
  • [Uncertainty Estimation]

[22-07-2020][paper48]

  • Leveraging uncertainty information from deep neural networks for disease detection
  • Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, Siegfried Wahl
  • Nature 2017
  • [Uncertainty Estimation]

[22-07-2020][paper47]

  • Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
  • Tanya Nair, Doina Precup, Douglas L. Arnold, Tal Arbel
  • MICCAI 2018
  • [Uncertainty Estimation]

[22-07-2020][paper46]

[waiting][paper44]

[waiting][paper43] [pdf]

  • Uncertainty-guided Continual Learning with Bayesian Neural Networks
  • Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
  • ICLR 2020
  • [Bayesian Methods]

[waiting][paper41]

[waiting][paper40]

[waiting][paper38]

  • AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
  • Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, Balaji Lakshminarayanan
  • ICLR 2020
  • [Uncertainty Estimation]

[waiting][paper37]

[waiting][paper36]

[waiting][paper35]

[waiting][thesis5]

  • Neural Density Estimation and Likelihood-free Inference
  • George Papamakarios
  • University of Edinburgh 2019
  • [Uncertainty Estimation]

[waiting][thesis4]

[waiting][paper27]

[waiting][paper24]

[waiting][paper23]

[waiting][paper22]

  • Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles [pdf]
  • Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan, David Crandall, Dhruv Batra
  • NIPS 2016
  • [Uncertainty Estimation]

[waiting][paper21]

  • Accurate Uncertainty Estimation and Decomposition in Ensemble Learning [pdf]
  • Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, Brent Coull
  • NIPS 2019
  • [Uncertainty Estimation]

[waiting][paper20]

  • Direct Uncertainty Prediction for Medical Second Opinions [pdf]
  • Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Robert Kleinberg, Sendhil Mullainathan, Jon Kleinberg
  • ICML 2019
  • [Uncertainty Estimation]

[waiting][paper19]

[waiting][paper16]

  • On the uncertainty of self-supervised monocular depth estimation [[pdf]](On the uncertainty of self-supervised monocular depth estimation)
  • Matteo Poggi Filippo Aleotti Fabio Tosi Stefano Mattoccia
  • CVPR 2020
  • [Uncertatinty Estimation] [Depth Estimation]

[waiting][paper15]

[waiting][paper14]

[waiting][paper13]

  • Deep Ensembles: A Loss Landscape Perspective
  • Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
  • arxiv 2019
  • [Uncertatinty Estimation]

[waiting][paper12]

[waiting][thesis3]

[waiting][thesis1]

[waiting][paper11]

[waiting][paper10]

[waiting][paper9]

[waiting][paper8]

[24-06-2020][paper7]

  • On Calibration of Modern Neural Networks
  • Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger
  • ICLR 2017
  • [Uncertatinty Estimation]

[waiting][paper6]

  • BatchEnsemble: an Alternative Approach to Efficient Ensemble and Lifelong Learning
  • Yeming Wen, Dustin Tran, Jimmy Ba
  • ICLR 2020
  • [Uncertatinty Estimation]

[10-06-2020][paper5]

[10-06-2020][paper4]

[waiting][paper3]

[waiting][paper2]

Bayesian Methods

[waiting][paper52]

  • Practical Variational Inference for Neural Networks
  • Alex Graves
  • NIPS 2011
  • [Bayesian Methods]

[waiting][paper45]

  • Variational Inference: A Review for Statisticians
  • David M. Blei, Alp Kucukelbir, Jon D. McAuliffe
  • JASA 2017
  • [Bayesian Methods]

[waiting][paper44]

[waiting][paper43] [pdf]

  • Uncertainty-guided Continual Learning with Bayesian Neural Networks
  • Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
  • ICLR 2020
  • [Bayesian Methods]

[waiting][paper42] [pdf]

  • Explaining the Gibbs Sampler
  • George Casella, Edward I. George
  • TAS 1992
  • [Bayesian Methods]

[waiting][paper34]

  • Normalizing Flows for Probabilistic Modeling and Inference
  • George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan
  • review article 2019
  • [Bayesian Methods]

[waiting][paper23]

[waiting][paper17]

  • Multiplicative Normalizing Flows for Variational Bayesian Neural Networks [pdf]
  • Christos Louizos, Max Welling
  • ICML 2017
  • [Bayesian Methods]

[waiting][paper12]

[waiting][thesis3]

[waiting][thesis1]

[waiting][paper11]

[waiting][paper10]

[waiting][paper8]

[waiting][paper5]

[10-06-2020][paper4]

[waiting][paper3]

[waiting][paper2]

Natural Language Processing

[done][paper55]

  • Improving language understanding by generative pre-training
  • Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever
  • ?
  • [Natural Language Processing]

[done][paper54]

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
  • ACL 2019
  • [Natural Language Processing]

[waiting][paper35]

[waiting][paper4]

[waiting][paper32]

  • Neural Machine Translation of Rare Words with Subword Units
  • Rico Sennrich, Barry Haddow, Alexandra Birch
  • ACL 2016
  • [Natural Language Processing]

[waiting][paper30]

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
  • ACL 2017
  • [Natural Language Processing]

[waiting][paper29]

  • Attention Is All You Need
  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
  • NIPS 2017
  • [Natural Language Processing]

[waiting][paper1]

  • Unsupervised Translation of Programming Languages [pdf]
  • Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, Guillaume Lample
  • 05-06-2020, arxiv
  • [Natural Language Processing]

Gaussian Processes

[waiting][paper18]

[waiting][paper3]

Depth Estimation

[waiting][paper19]

[waiting][paper16]

  • On the uncertainty of self-supervised monocular depth estimation [[pdf]](On the uncertainty of self-supervised monocular depth estimation)
  • Matteo Poggi Filippo Aleotti Fabio Tosi Stefano Mattoccia
  • CVPR 2020
  • [Uncertatinty Estimation] [Depth Estimation]

[waiting][paper15]

[waiting][paper14]

Active Learning

[22-07-2020][paper50]

  • A Sequential Algorithm for Training Text Classifiers
  • David D. Lewis, William A. Gale
  • ICDS 2019
  • [Uncertainty Estimation]

Random

Place for papers, that I don't really want to categorize ;)

[waiting][paper51]

  • Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
  • Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse
  • ICLR 2018
  • [Random]

[waiting][paper39]

  • Pointer Networks
  • Oriol Vinyals, Meire Fortunato, Navdeep Jaitly
  • NIPS 2015
  • [Random]

[waiting][paper33]

  • Layer Normalization
  • Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton
  • ? 2016
  • [Random]

2020

[done][paper58]

  • Normalizing Flows: An Introduction and Review of Current Methods
  • Ivan Kobyzev, Simon J.D. Prince, Marcus A. Brubaker
  • TPAMI 2020
  • [Uncertainty Estimation]

[done][paper57]

  • Uncertainty-Aware Deep Classifiers using Generative Models
  • Murat Sensoy, Lance Kaplan, Federico Cerutti, Maryam Saleki
  • AAAI 2020
  • [Uncertainty Estimation]

[done][paper56]

  • Deep Ensembles: A Loss Landscape Perspective
  • Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
  • arXiv 2019
  • [Uncertainty Estimation]

[done][paper55]

  • Improving language understanding by generative pre-training
  • Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever
  • ?
  • [Natural Language Processing]

[done][paper54]

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
  • ACL 2019
  • [Natural Language Processing]

[done][paper54]

[done][paper53]

  • Uncertainty-guided Continual Learning with Bayesian Neural Networks
  • Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
  • ICLR 2020
  • [Uncertainty Estimation]

[waiting][paper52]

  • Practical Variational Inference for Neural Networks
  • Alex Graves
  • NIPS 2011
  • [Bayesian Methods]

[waiting][paper51]

  • Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
  • Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse
  • ICLR 2018
  • [Random]

[done][paper50]

  • A Sequential Algorithm for Training Text Classifiers
  • David D. Lewis, William A. Gale
  • ICDS 2019
  • [Uncertainty Estimation]

[22-07-2020][paper49]

  • Epistemic Uncertainty Sampling
  • Vu-Linh Nguyen, Sébastien Destercke, Eyke Hüllermeier
  • ICDS 2019
  • [Uncertainty Estimation]

[22-07-2020][paper48]

  • Leveraging uncertainty information from deep neural networks for disease detection
  • Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, Siegfried Wahl
  • Nature 2017
  • [Uncertainty Estimation]

[22-07-2020][paper47]

  • Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
  • Tanya Nair, Doina Precup, Douglas L. Arnold, Tal Arbel
  • MICCAI 2018
  • [Uncertainty Estimation]

[22-07-2020][paper46]

[waiting][paper45]

  • Variational Inference: A Review for Statisticians
  • David M. Blei, Alp Kucukelbir, Jon D. McAuliffe
  • JASA 2017
  • [Bayesian Methods]

[waiting][paper44]

[waiting][paper43] [pdf]

  • Uncertainty-guided Continual Learning with Bayesian Neural Networks
  • Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
  • ICLR 2020
  • [Bayesian Methods]

[waiting][paper42] [pdf]

  • Explaining the Gibbs Sampler
  • George Casella, Edward I. George
  • TAS 1992
  • [Bayesian Methods]

[waiting][paper41]

[waiting][paper40]

[waiting][paper39]

  • Pointer Networks
  • Oriol Vinyals, Meire Fortunato, Navdeep Jaitly
  • NIPS 2015
  • [Random]

[waiting][paper38]

  • AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
  • Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, Balaji Lakshminarayanan
  • ICLR 2020
  • [Uncertainty Estimation]

[waiting][paper37]

[waiting][paper36]

[waiting][paper35]

[waiting][paper34]

  • Normalizing Flows for Probabilistic Modeling and Inference
  • George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan
  • review article 2019
  • [Bayesian Methods]

[waiting][paper33]

  • Layer Normalization
  • Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton
  • ? 2016
  • [Random]

[waiting][paper32]

  • Neural Machine Translation of Rare Words with Subword Units
  • Rico Sennrich, Barry Haddow, Alexandra Birch
  • ACL 2016
  • [Natural Language Processing]

[waiting][paper31]

  • Image Transformer
  • Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander Ku, Dustin Tran
  • ICML 2018
  • [Computer Vision]

[waiting][paper30]

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
  • ACL 2017
  • [Natural Language Processing]

[waiting][paper29]

  • Attention Is All You Need
  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
  • NIPS 2017
  • [Natural Language Processing]

[waiting][paper28]

  • Federated Machine Learning: Concept and Applications
  • Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong
  • ACM TIST 2019
  • [Federated Learning]

[waiting][paper27]

[waiting][paper26]

  • Domain-Adaptive Multibranch Networks
  • Bermúdez Chacón, Róger ; Salzmann, Mathieu ; Fua, Pascal
  • ICLR 2020
  • [[Domain Adaptation]]

[waiting][paper25]

  • DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection [pdf]
  • Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, Aythami Morales and Javier Ortega-Garcia
  • arxiv
  • [[DeepFakes]]

[waiting][paper24]

[waiting][paper23]

[waiting][paper22]

  • Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles [pdf]
  • Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan, David Crandall, Dhruv Batra
  • NIPS 2016
  • [Uncertainty Estimation]

[waiting][paper21]

  • Accurate Uncertainty Estimation and Decomposition in Ensemble Learning [pdf]
  • Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, Brent Coull
  • NIPS 2019
  • [Uncertainty Estimation]

[waiting][paper20]

  • Direct Uncertainty Prediction for Medical Second Opinions [pdf]
  • Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Robert Kleinberg, Sendhil Mullainathan, Jon Kleinberg
  • ICML 2019
  • [Uncertainty Estimation]

[waiting][paper19]

[waiting][paper18]

[waiting][paper17]

  • Multiplicative Normalizing Flows for Variational Bayesian Neural Networks [pdf]
  • Christos Louizos, Max Welling
  • ICML 2017
  • [Bayesian Methods]

[waiting][paper16]

  • On the uncertainty of self-supervised monocular depth estimation [[pdf]](On the uncertainty of self-supervised monocular depth estimation)
  • Matteo Poggi Filippo Aleotti Fabio Tosi Stefano Mattoccia
  • CVPR 2020
  • [Uncertatinty Estimation] [Depth Estimation]

[waiting][paper15]

[waiting][paper14]

[waiting][paper13]

  • Deep Ensembles: A Loss Landscape Perspective
  • Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan
  • arxiv 2019
  • [Uncertatinty Estimation]

[waiting][paper12]

[waiting][paper11]

[waiting][paper10]

[waiting][paper9]

[waiting][paper8]

[24-06-2020][paper7]

  • On Calibration of Modern Neural Networks
  • Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger
  • ICLR 2017
  • [Uncertatinty Estimation]

[14-06-2020][paper6]

  • BatchEnsemble: an Alternative Approach to Efficient Ensemble and Lifelong Learning
  • Yeming Wen, Dustin Tran, Jimmy Ba
  • ICLR 2020
  • [Uncertatinty Estimation]

[10-06-2020][paper5]

[10-06-2020][paper4]

[waiting][paper3]

[waiting][paper2]

[waiting][paper1]

  • Unsupervised Translation of Programming Languages [pdf]
  • Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, Guillaume Lample
  • 05-06-2020, arxiv
  • [Natural Language Processing]

About

here I store some papers I've enjoyed to read (should update this at least every week, but sometimes I'm too lazy c:)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages