Skip to content

nogilnick/DTAnalyze

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

DTAnalyze

Functions to estimate importance of features in determining predictions for individual samples (aka "feature activations"). Fast nogil implementation in Cython.

Example Usage

import numpy as np
from sklearn.ensemble import RandomForestRegressor
from DTAnalyze.Activation import GetActivations

A = np.random.rand(256, 3)
Y = (2 * (A[:, 0] > 0.5) - (A[:, 1] < 0.5) - 
     (A[:, 2] > 0.5) + np.random.normal(0, 0.1, size=256))

rfr = RandomForestRegressor(n_jobs=4).fit(A, Y)

L1 = GetActivations(rfr, A)

Install

Install using pip:

pip install DTAnalyze

Or you can build manually from this repository:

python setup.py build_ext

Then copy build artifact into DTAnalyze (sub) folder and put that folder somewhere in your path.

About

Fast feature activations for sklearn tree models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published