forked from AmbaPant/mantid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ICConvoluted.py
133 lines (116 loc) · 5.31 KB
/
ICConvoluted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Mantid Repository : https://github.com/mantidproject/mantid
#
# Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
# NScD Oak Ridge National Laboratory, European Spallation Source,
# Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS
# SPDX - License - Identifier: GPL - 3.0 +
# ICConvoluted.py
#
# Defines the IPeakFunction IkedaCarpenterConvoluted
# which is the standard Ikeda-Carpenter (IC) function convoluted with
# a square wave and a Gaussian.
#
#
import numpy as np
from mantid.api import IFunction1D, FunctionFactory
class IkedaCarpenterConvoluted(IFunction1D):
def init(self):
self.declareParameter("A") # Alpha
self.declareParameter("B") # Beta
self.declareParameter("R") # R - ratio of fast to slow neutrons
self.declareParameter("T0") # T0 - time offset
self.declareParameter("Scale") # amplitude
self.declareParameter("HatWidth") # width of square wave
self.declareParameter("KConv") # KConv for Gaussian
# use penalty=None to not use default mantid penalty
def setPenalizedConstraints(self, A0=None, B0=None, R0=None, T00=None, Scale0=None, HatWidth0=None, KConv0=None, penalty=None):
if A0 is not None:
self.addConstraints("{:4.4e} < A < {:4.4e}".format(A0[0], A0[1]))
if penalty is not None:
self.setConstraintPenaltyFactor("A", penalty)
if B0 is not None:
self.addConstraints("{:4.4e} < B < {:4.4e}".format(B0[0], B0[1]))
if penalty is not None:
self.setConstraintPenaltyFactor("B", penalty)
if R0 is not None:
self.addConstraints("{:4.4e} < R < {:4.4e}".format(R0[0], R0[1]))
if penalty is not None:
self.setConstraintPenaltyFactor("R", penalty)
if T00 is not None:
self.addConstraints(
"{:4.4e} < T0 < {:4.4e}".format(T00[0], T00[1]))
if penalty is not None:
self.setConstraintPenaltyFactor("T0", penalty)
if Scale0 is not None:
self.addConstraints(
"{:4.4e} < Scale < {:4.4e}".format(Scale0[0], Scale0[1]))
if penalty is not None:
self.setConstraintPenaltyFactor("Scale", penalty)
if HatWidth0 is not None:
self.addConstraints("{:4.4e} < HatWidth < {:4.4e}".format(
HatWidth0[0], HatWidth0[1]))
if penalty is not None:
self.setConstraintPenaltyFactor("HatWidth", penalty)
if KConv0 is not None:
self.addConstraints(
"{:4.4e} < KConv < {:4.4e}".format(KConv0[0], KConv0[1]))
if penalty is not None:
self.setConstraintPenaltyFactor("KConv", penalty)
def function1D(self, t):
A = self.getParamValue(0)
B = self.getParamValue(1)
R = self.getParamValue(2)
T0 = self.getParamValue(3)
Scale = self.getParamValue(4)
HatWidth = self.getParamValue(5)
KConv = self.getParamValue(6)
# A/2 Scale factor has been removed to make A and Scale independent
f_int = Scale*((1-R) * np.power((A*(t-T0)), 2)
* np.exp(-A*(t-T0))+2*R*A**2*B/np.power((A-B), 3)
* (np.exp(-B*(t-T0))-np.exp(-A*(t-T0))*(1+(A-B)*(t-T0)+0.5*np.power((A-B), 2)*np.power((t-T0), 2))))
f_int[t < T0] = 0
mid_point_hat = len(f_int)//2
gc_x = np.array(range(len(f_int))).astype(float)
ppd = 0.0*gc_x
lowIDX = int(np.floor(np.max([mid_point_hat-np.abs(HatWidth), 0])))
highIDX = int(
np.ceil(np.min([mid_point_hat+np.abs(HatWidth), len(gc_x)])))
ppd[lowIDX:highIDX] = 1.0
ppd = ppd/sum(ppd)
gc_x = np.array(range(len(f_int))).astype(float)
gc_x = 2*(gc_x-np.min(gc_x))/(np.max(gc_x)-np.min(gc_x))-1
gc_f = np.exp(-KConv*np.power(gc_x, 2))
gc_f = gc_f/np.sum(gc_f)
npad = len(f_int) - 1
first = npad - npad//2
f_int = np.convolve(f_int, ppd, 'full')[first:first+len(f_int)]
f_int = np.convolve(f_int, gc_f, 'full')[first:first+len(f_int)]
return f_int
# Evaluate the function for a differnt set of paremeters (trialc)
def function1DDiffParams(self, xvals, trialc):
# First, grab the original parameters and set to trialc
c = np.zeros(self.numParams())
for i in range(self.numParams()):
c[i] = self.getParamValue(i)
self.setParameter(i, trialc[i])
# Get the trial values
f_trial = self.function1D(xvals)
# Now return to the orignial
for i in range(self.numParams()):
self.setParameter(i, c[i])
return f_trial
# Construction the Jacobian (df) for the function
def functionDeriv1D(self, xvals, jacobian, eps=1.e-3):
f_int = self.function1D(xvals)
# Fetch parameters into array c
c = np.zeros(self.numParams())
for i in range(self.numParams()):
c[i] = self.getParamValue(i)
nc = np.prod(np.shape(c))
for k in range(nc):
dc = np.zeros(nc)
dc[k] = max(eps, eps*c[k])
f_new = self.function1DDiffParams(xvals, c+dc)
for i, dF in enumerate(f_new-f_int):
jacobian.set(i, k, dF/dc[k])
FunctionFactory.subscribe(IkedaCarpenterConvoluted)