forked from AmbaPant/mantid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCylinderPaalmanPingsCorrection2.py
785 lines (660 loc) · 36 KB
/
CylinderPaalmanPingsCorrection2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
# Mantid Repository : https://github.com/mantidproject/mantid
#
# Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
# NScD Oak Ridge National Laboratory, European Spallation Source,
# Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS
# SPDX - License - Identifier: GPL - 3.0 +
#pylint: disable=no-init,too-many-locals,too-many-instance-attributes,too-many-arguments,invalid-name
import math
import numpy as np
from mantid.simpleapi import *
from mantid.api import (PythonAlgorithm, AlgorithmFactory, PropertyMode, MatrixWorkspaceProperty,
WorkspaceGroupProperty, InstrumentValidator, Progress)
from mantid.kernel import (StringListValidator, IntBoundedValidator, FloatBoundedValidator, Direction, logger)
def set_material_density(set_material_alg, density_type, density, number_density_unit):
if density_type == 'Mass Density':
set_material_alg.setProperty('SampleMassDensity', density)
else:
set_material_alg.setProperty('SampleNumberDensity', density)
set_material_alg.setProperty('NumberDensityUnit', number_density_unit)
return set_material_alg
class CylinderPaalmanPingsCorrection(PythonAlgorithm):
# Sample variables
_sample_ws_name = None
_use_sample_mass_density = None
_sample_inner_radius = None
_sample_outer_radius = None
_sample_density_type = None
_sample_density = None
# Container variables
_use_can = False
_can_ws_name = None
_can_density_type = None
_can_density = None
_can_outer_radius = None
_number_can = 1
_ms = 1
_number_wavelengths = 10
_emode = None
_efixed = 0.0
_step_size = None
_output_ws_name = None
_beam = list()
_angles = list()
_waves = list()
_elastic = 0.0
_fixed = 0.0
_sig_s = None
_sig_a = None
_density = None
_radii = None
_interpolate = False
#------------------------------------------------------------------------------
def version(self):
return 2
def category(self):
return "Workflow\\MIDAS;CorrectionFunctions\\AbsorptionCorrections"
def summary(self):
return "Calculates absorption corrections for a cylindrical or annular sample using Paalman & Pings format."
#------------------------------------------------------------------------------
def PyInit(self):
ws_validator = InstrumentValidator()
self.declareProperty(MatrixWorkspaceProperty('SampleWorkspace', '',
validator=ws_validator,
direction=Direction.Input),
doc="Name for the input Sample workspace.")
self.declareProperty(name='SampleChemicalFormula', defaultValue='',
doc='Sample chemical formula')
self.declareProperty(name='SampleCoherentXSection', defaultValue=0.0,
validator=FloatBoundedValidator(0.0),
doc='The coherent cross-section for the sample material in barns. To be used instead of '
'Chemical Formula.')
self.declareProperty(name='SampleIncoherentXSection', defaultValue=0.0,
validator=FloatBoundedValidator(0.0),
doc='The incoherent cross-section for the sample material in barns. To be used instead of '
'Chemical Formula.')
self.declareProperty(name='SampleAttenuationXSection', defaultValue=0.0,
validator=FloatBoundedValidator(0.0),
doc='The absorption cross-section for the sample material in barns. To be used instead of '
'Chemical Formula.')
self.declareProperty(name='SampleDensityType', defaultValue='Mass Density',
validator=StringListValidator(['Mass Density', 'Number Density']),
doc='Use of Mass density or Number density for the sample.')
self.declareProperty(name='SampleNumberDensityUnit', defaultValue='Atoms',
validator=StringListValidator(['Atoms', 'Formula Units']),
doc='Choose which units SampleDensity refers to. Allowed values: [Atoms, Formula Units]')
self.declareProperty(name='SampleDensity', defaultValue=0.1,
doc='The value for the sample Mass density (g/cm^3) or Number density (1/Angstrom^3).')
self.declareProperty(name='SampleInnerRadius', defaultValue=0.05,
validator=FloatBoundedValidator(0.0),
doc='Sample inner radius')
self.declareProperty(name='SampleOuterRadius', defaultValue=0.1,
validator=FloatBoundedValidator(0.0),
doc='Sample outer radius')
self.declareProperty(MatrixWorkspaceProperty('CanWorkspace', '',
optional=PropertyMode.Optional,
validator=ws_validator,
direction=Direction.Input),
doc="Name for the input Can workspace.")
self.declareProperty(name='CanChemicalFormula', defaultValue='',
doc='Can chemical formula')
self.declareProperty(name='CanCoherentXSection', defaultValue=0.0,
validator=FloatBoundedValidator(0.0),
doc='The coherent cross-section for the can material in barns. To be used instead of '
'Chemical Formula.')
self.declareProperty(name='CanIncoherentXSection', defaultValue=0.0,
validator=FloatBoundedValidator(0.0),
doc='The incoherent cross-section for the can material in barns. To be used instead of '
'Chemical Formula.')
self.declareProperty(name='CanAttenuationXSection', defaultValue=0.0,
validator=FloatBoundedValidator(0.0),
doc='The absorption cross-section for the can material in barns. To be used instead of '
'Chemical Formula.')
self.declareProperty(name='CanDensityType', defaultValue='Mass Density',
validator=StringListValidator(['Mass Density', 'Number Density']),
doc='Use of Mass density or Number density for the can.')
self.declareProperty(name='CanNumberDensityUnit', defaultValue='Atoms',
validator=StringListValidator(['Atoms', 'Formula Units']),
doc='Choose which units CanDensity refers to. Allowed values: [Atoms, Formula Units]')
self.declareProperty(name='CanDensity', defaultValue=0.1,
doc='The value for the can Mass density (g/cm^3) or Number density (1/Angstrom^3).')
self.declareProperty(name='CanOuterRadius', defaultValue=0.15,
validator=FloatBoundedValidator(0.0),
doc='Can outer radius')
self.declareProperty(name='BeamHeight', defaultValue=3.0,
validator=FloatBoundedValidator(0.0),
doc='Beam height')
self.declareProperty(name='BeamWidth', defaultValue=2.0,
validator=FloatBoundedValidator(0.0),
doc='Beam width')
self.declareProperty(name='StepSize', defaultValue=0.002,
validator=FloatBoundedValidator(0.0),
doc='Step size')
self.declareProperty(name='Interpolate', defaultValue=True,
doc='Interpolate the correction workspaces to match the sample workspace')
self.declareProperty(name='NumberWavelengths', defaultValue=10,
validator=IntBoundedValidator(1),
doc='Number of wavelengths for calculation')
self.declareProperty(name='Emode', defaultValue='Elastic',
validator=StringListValidator(['Elastic', 'Indirect', 'Direct', 'Efixed']),
doc='Energy transfer mode.')
self.declareProperty(name='Efixed', defaultValue=0.,
doc='Analyser energy (mev). By default will be read from the instrument parameters. '
'Specify manually to override. This is used in energy transfer modes other than Elastic.')
self.declareProperty(WorkspaceGroupProperty('OutputWorkspace', '',
direction=Direction.Output),
doc='The output corrections workspace group')
#------------------------------------------------------------------------------
def validateInputs(self):
self._setup()
issues = dict()
sample_ws_name = self.getPropertyValue('SampleWorkspace')
can_ws_name = self.getPropertyValue('CanWorkspace')
if (self._radii[1] - self._radii[0]) < 1e-4:
issues['SampleOuterRadius']='Sample outer radius must be bigger than inner radius'
logger.information('Sample : inner radius = %f ; outer radius = %f' % (self._radii[0], self._radii[1]))
if self._use_can:
self._radii[2] = self._can_outer_radius
if (self._radii[2] - self._radii[1]) < 1e-4:
issues['CanOuterRadius'] = 'Can outer radius must be bigger than sample outer radius'
else:
logger.information('Can : inner radius = %f ; outer radius = %f' % (self._radii[1], self._radii[2]))
# Ensure that a can chemical formula is given when using a can workspace
if self._use_can:
can_chemical_formula = self.getPropertyValue('CanChemicalFormula')
can_coherent_cross_section = self.getPropertyValue('CanCoherentXSection')
can_incoherent_cross_section = self.getPropertyValue('CanIncoherentXSection')
can_attenuation_cross_section = self.getPropertyValue('CanAttenuationXSection')
if can_chemical_formula == '' and (can_coherent_cross_section == 0.0 and can_incoherent_cross_section == 0.0
and can_attenuation_cross_section == 0.0):
issues['CanChemicalFormula'] = 'Must provide a chemical formula or cross sections when providing a ' \
'can workspace.'
# Ensure there are enough steps
number_steps = int((self._sample_outer_radius - self._sample_inner_radius) / self._step_size)
if number_steps < 20:
issues['StepSize'] = 'Number of steps (%d) should be >= 20' % number_steps
logger.information('Sample : ms = %i ' % self._ms)
if self._emode != 'Efixed':
# require both sample and can ws have wavelength as x-axis
if mtd[sample_ws_name].getAxis(0).getUnit().unitID() != 'Wavelength':
issues['SampleWorkspace'] = 'Workspace must have units of wavelength.'
if self._use_can and mtd[can_ws_name].getAxis(0).getUnit().unitID() != 'Wavelength':
issues['CanWorkspace'] = 'Workspace must have units of wavelength.'
return issues
#------------------------------------------------------------------------------
def PyExec(self):
self._setup()
self._sample()
self._wave_range()
self._get_angles()
self._transmission()
dataA1 = []
dataA2 = []
dataA3 = []
dataA4 = []
data_prog = Progress(self, start=0.1, end=0.85, nreports=len(self._angles))
for angle in self._angles:
(A1, A2, A3, A4) = self._cyl_abs(angle)
logger.information('Angle : %f * successful' % angle)
data_prog.report('Appending data for angle %f' % angle)
dataA1 = np.append(dataA1, A1)
dataA2 = np.append(dataA2, A2)
dataA3 = np.append(dataA3, A3)
dataA4 = np.append(dataA4, A4)
dataX = self._waves * len(self._angles)
wrk_reports = 5
if self._use_can:
wrk_reports = 8
workflow_prog = Progress(self, start=0.85, end=1.0, nreports=wrk_reports)
# Create the output workspaces
ass_ws = self._output_ws_name + '_ass'
workflow_prog.report('Creating Workspace')
CreateWorkspace(OutputWorkspace=ass_ws,
DataX=dataX,
DataY=dataA1,
NSpec=len(self._angles),
UnitX='Wavelength',
ParentWorkspace=self._sample_ws_name,
EnableLogging=False)
workspaces = [ass_ws]
if self._use_can:
workflow_prog.report('Creating assc Workspace')
assc_ws = self._output_ws_name + '_assc'
workspaces.append(assc_ws)
CreateWorkspace(OutputWorkspace=assc_ws,
DataX=dataX,
DataY=dataA2,
NSpec=len(self._angles),
UnitX='Wavelength',
ParentWorkspace=self._sample_ws_name,
EnableLogging=False)
workflow_prog.report('Creating acsc Workspace')
acsc_ws = self._output_ws_name + '_acsc'
workspaces.append(acsc_ws)
CreateWorkspace(OutputWorkspace=acsc_ws,
DataX=dataX,
DataY=dataA3,
NSpec=len(self._angles),
UnitX='Wavelength',
ParentWorkspace=self._sample_ws_name,
EnableLogging=False)
workflow_prog.report('Creating acc Workspace')
acc_ws = self._output_ws_name + '_acc'
workspaces.append(acc_ws)
CreateWorkspace(OutputWorkspace=acc_ws,
DataX=dataX,
DataY=dataA4,
NSpec=len(self._angles),
UnitX='Wavelength',
ParentWorkspace=self._sample_ws_name,
EnableLogging=False)
if self._interpolate:
self._interpolate_corrections(workspaces)
workflow_prog.report('Constructing Sample Logs')
sample_log_workspaces = workspaces
sample_logs = [('sample_shape', 'cylinder'),
('sample_filename', self._sample_ws_name),
('sample_inner', self._sample_inner_radius),
('sample_outer', self._sample_outer_radius),
('emode', self._emode),
('efixed', self._efixed)]
if self._use_can:
sample_logs.append(('can_filename', self._can_ws_name))
sample_logs.append(('can_outer', self._can_outer_radius))
log_names = [item[0] for item in sample_logs]
log_values = [item[1] for item in sample_logs]
for ws_name in sample_log_workspaces:
workflow_prog.report('Adding sample logs to %s' % ws_name)
AddSampleLogMultiple(Workspace=ws_name, LogNames=log_names, LogValues=log_values, EnableLogging=False)
workflow_prog.report('Create GroupWorkspace Output')
GroupWorkspaces(InputWorkspaces=','.join(workspaces), OutputWorkspace=self._output_ws_name, EnableLogging=False)
self.setPropertyValue('OutputWorkspace', self._output_ws_name)
workflow_prog.report('Algorithm complete')
#------------------------------------------------------------------------------
def _setup(self):
setup_prog = Progress(self, start=0.00, end=0.01, nreports=2)
setup_prog.report('Obtaining input properties')
self._sample_ws_name = self.getPropertyValue('SampleWorkspace')
self._sample_density_type = self.getPropertyValue('SampleDensityType')
self._sample_number_density_unit = self.getPropertyValue('SampleNumberDensityUnit')
self._sample_density = self.getProperty('SampleDensity').value
self._sample_chemical_formula = self.getPropertyValue('SampleChemicalFormula')
self._sample_coherent_cross_section = self.getPropertyValue('SampleCoherentXSection')
self._sample_incoherent_cross_section = self.getPropertyValue('SampleIncoherentXSection')
self._sample_attenuation_cross_section = self.getPropertyValue('SampleAttenuationXSection')
self._sample_inner_radius = self.getProperty('SampleInnerRadius').value
self._sample_outer_radius = self.getProperty('SampleOuterRadius').value
self._number_can = 1
self._can_ws_name = self.getPropertyValue('CanWorkspace')
self._use_can = self._can_ws_name != ''
self._can_density_type = self.getPropertyValue('CanDensityType')
self._can_number_density_unit = self.getPropertyValue('CanNumberDensityUnit')
self._can_density = self.getProperty('CanDensity').value
self._can_chemical_formula = self.getPropertyValue('CanChemicalFormula')
self._can_coherent_cross_section = self.getPropertyValue('CanCoherentXSection')
self._can_incoherent_cross_section = self.getPropertyValue('CanIncoherentXSection')
self._can_attenuation_cross_section = self.getPropertyValue('CanAttenuationXSection')
self._can_outer_radius = self.getProperty('CanOuterRadius').value
if self._use_can:
self._number_can = 2
self._step_size = self.getProperty('StepSize').value
self._radii = np.zeros(self._number_can +1)
self._radii[0] = self._sample_inner_radius
self._radii[1] = self._sample_outer_radius
if self._use_can:
self._radii[2] = self._can_outer_radius
setup_prog.report('Obtaining beam values')
beam_width = self.getProperty('BeamWidth').value
beam_height = self.getProperty('BeamHeight').value
self._beam = [beam_height,
0.5 * beam_width,
-0.5 * beam_width,
(beam_width / 2),
-(beam_width / 2),
0.0,
beam_height,
0.0,
beam_height]
self._interpolate = self.getProperty('Interpolate').value
self._number_wavelengths = self.getProperty('NumberWavelengths').value
self._emode = self.getPropertyValue('Emode')
self._efixed = self.getProperty('Efixed').value
if self._emode == 'Efixed':
logger.information('No interpolation is possible in Efixed mode.')
self._interpolate = False
if self._efixed == 0. and self._emode != 'Elastic':
# In all the modes other than elastic, efixed is needed.
# So try to get from instrument if the input is not set.
try:
self._efixed = self._getEfixed()
logger.information('Found Efixed = {0}'.format(self._efixed))
except ValueError:
raise RuntimeError('Could not find the Efixed parameter in the instrument. '
'Please specify manually.')
self._set_sample_method = 'Chemical Formula' if self._sample_chemical_formula != '' else 'Cross Sections'
self._set_can_method = 'Chemical Formula' if self._can_chemical_formula != '' else 'Cross Sections'
# purge the lists
self._angles = list()
self._waves = list()
self._output_ws_name = self.getPropertyValue('OutputWorkspace')
#------------------------------------------------------------------------------
def _sample(self):
sample_prog = Progress(self, start=0.01, end=0.03, nreports=2)
sample_prog.report('Setting Sample Material for Sample')
sample_ws, self._sample_density = self._set_material(self._sample_ws_name,
self._set_sample_method,
self._sample_chemical_formula,
self._sample_coherent_cross_section,
self._sample_incoherent_cross_section,
self._sample_attenuation_cross_section,
self._sample_density_type,
self._sample_density,
self._sample_number_density_unit)
sample_material = sample_ws.sample().getMaterial()
# total scattering x-section
self._sig_s = np.zeros(self._number_can)
self._sig_s[0] = sample_material.totalScatterXSection()
# absorption x-section
self._sig_a = np.zeros(self._number_can)
self._sig_a[0] = sample_material.absorbXSection()
# density
self._density = np.zeros(self._number_can)
self._density[0] = self._sample_density
if self._use_can:
sample_prog.report('Setting Sample Material for Container')
can_ws, self._can_density = self._set_material(self._can_ws_name,
self._set_can_method,
self._can_chemical_formula,
self._can_coherent_cross_section,
self._can_incoherent_cross_section,
self._can_attenuation_cross_section,
self._can_density_type,
self._can_density,
self._can_number_density_unit)
can_material = can_ws.sample().getMaterial()
self._sig_s[1] = can_material.totalScatterXSection()
self._sig_a[1] = can_material.absorbXSection()
self._density[1] = self._can_density
def _set_material(self, ws_name, method, chemical_formula, coherent_x_section, incoherent_x_section,
attenuation_x_section, density_type, density, number_density_unit):
"""
Sets the sample material for a given workspace
@param ws_name :: name of the workspace to set sample material for
@param method :: the method used to set the sample material
@param chemical_formula :: Chemical formula of sample
@param coherent_x_section :: the coherent cross section
@param incoherent_x_section :: the incoherent cross section
@param attenuation_x_section:: the absorption cross section
@param density_type :: 'Mass Density' or 'Number Density'
@param density :: Density of sample
@param number_density_unit :: the unit to use ('Atoms' or 'Formula Units') if the density type is Number density
@return pointer to the workspace with sample material set
AND
number density of the sample material
"""
set_material_alg = self.createChildAlgorithm('SetSampleMaterial')
set_material_alg.setProperty('InputWorkspace', ws_name)
set_material_alg = set_material_density(set_material_alg, density_type, density, number_density_unit)
if method == 'Chemical Formula':
set_material_alg.setProperty('ChemicalFormula', chemical_formula)
else:
set_material_alg.setProperty('CoherentXSection', coherent_x_section)
set_material_alg.setProperty('IncoherentXSection', incoherent_x_section)
set_material_alg.setProperty('AttenuationXSection', attenuation_x_section)
set_material_alg.setProperty('ScatteringXSection', float(coherent_x_section) + float(incoherent_x_section))
set_material_alg.execute()
ws = set_material_alg.getProperty('InputWorkspace').value
number_density = ws.sample().getMaterial().numberDensity
return ws, number_density
#------------------------------------------------------------------------------
def _get_angles(self):
num_hist = mtd[self._sample_ws_name].getNumberHistograms()
angle_prog = Progress(self, start=0.03, end=0.07, nreports=num_hist)
source_pos = mtd[self._sample_ws_name].getInstrument().getSource().getPos()
sample_pos = mtd[self._sample_ws_name].getInstrument().getSample().getPos()
beam_pos = sample_pos - source_pos
self._angles = list()
for index in range(0, num_hist):
angle_prog.report('Obtaining data for detector angle %i' % index)
detector = mtd[self._sample_ws_name].getDetector(index)
two_theta = detector.getTwoTheta(sample_pos, beam_pos) * 180.0 / math.pi
self._angles.append(two_theta)
logger.information('Detector angles : %i from %f to %f ' % (len(self._angles), self._angles[0], self._angles[-1]))
#------------------------------------------------------------------------------
def _wave_range(self):
if self._emode != 'Elastic':
self._fixed = math.sqrt(81.787 / self._efixed)
if self._emode == 'Efixed':
self._waves.append(self._fixed)
logger.information('Efixed mode, setting lambda_fixed to {0}'.format(self._fixed))
else:
wave_range = '__wave_range'
ExtractSingleSpectrum(InputWorkspace=self._sample_ws_name, OutputWorkspace=wave_range, WorkspaceIndex=0)
Xin = mtd[wave_range].readX(0)
wave_min = mtd[wave_range].readX(0)[0]
wave_max = mtd[wave_range].readX(0)[len(Xin) - 1]
number_waves = self._number_wavelengths
wave_bin = (wave_max - wave_min) / (number_waves-1)
self._waves = list()
wave_prog = Progress(self, start=0.07, end = 0.10, nreports=number_waves)
for idx in range(0, number_waves):
wave_prog.report('Appending wave data: %i' % idx)
self._waves.append(wave_min + idx * wave_bin)
DeleteWorkspace(wave_range, EnableLogging = False)
if self._emode == 'Elastic':
self._elastic = self._waves[int(len(self._waves) / 2)]
logger.information('Elastic lambda : %f' % self._elastic)
logger.information('Lambda : %i values from %f to %f' % (len(self._waves), self._waves[0], self._waves[-1]))
#------------------------------------------------------------------------------
def _getEfixed(self):
inst = mtd[self._sample_ws_name].getInstrument()
if inst.hasParameter('Efixed'):
return inst.getNumberParameter('EFixed')[0]
if inst.hasParameter('analyser'):
analyser_name = inst.getStringParameter('analyser')[0]
analyser_comp = inst.getComponentByName(analyser_name)
if analyser_comp is not None and analyser_comp.hasParameter('Efixed'):
return analyser_comp.getNumberParameter('EFixed')[0]
raise ValueError('No Efixed parameter found')
#------------------------------------------------------------------------------
def _transmission(self):
distance = self._radii[1] - self._radii[0]
trans = math.exp(-distance*self._density[0]*(self._sig_s[0] + self._sig_a[0]))
logger.information('Sample transmission : %f' % trans)
if self._use_can:
distance = self._radii[2] - self._radii[1]
trans = math.exp(-distance*self._density[1]*(self._sig_s[1] + self._sig_a[1]))
logger.information('Can transmission : %f' % trans)
#------------------------------------------------------------------------------
def _interpolate_corrections(self, workspaces):
"""
Performs interpolation on the correction workspaces such that the number of bins
matches that of the input sample workspace.
@param workspaces List of correction workspaces to interpolate
"""
for ws in workspaces:
SplineInterpolation(WorkspaceToMatch=self._sample_ws_name,
WorkspaceToInterpolate=ws,
OutputWorkspace=ws,
OutputWorkspaceDeriv='')
#------------------------------------------------------------------------------
def _cyl_abs(self, angle):
# Parameters :
# self._step_size - step size
# self._beam - beam parameters
# nan - number of annuli
# radii - list of radii (for each annulus)
# density - list of densities (for each annulus)
# sigs - list of scattering cross-sections (for each annulus)
# siga - list of absorption cross-sections (for each annulus)
# angle - list of angles
# wavelas - elastic wavelength
# waves - list of wavelengths
# Output parameters : A1 - Ass ; A2 - Assc ; A3 - Acsc ; A4 - Acc
amu_scat = np.zeros(self._number_can)
amu_scat = self._density*self._sig_s
sig_abs = np.zeros(self._number_can)
sig_abs = self._density*self._sig_a
amu_tot_i = np.zeros(self._number_can)
amu_tot_s = np.zeros(self._number_can)
theta = angle*math.pi/180.
A1 = []
A2 = []
A3 = []
A4 = []
#loop over wavelengths
for wave in self._waves:
#loop over annuli
if self._emode == 'Elastic':
amu_tot_i = amu_scat + sig_abs*self._elastic/1.7979
amu_tot_s = amu_scat + sig_abs*self._elastic/1.7979
elif self._emode == 'Direct':
amu_tot_i = amu_scat + sig_abs*self._fixed/1.7979
amu_tot_s = amu_scat + sig_abs*wave/1.7979
elif self._emode == 'Indirect':
amu_tot_i = amu_scat + sig_abs*wave/1.7979
amu_tot_s = amu_scat + sig_abs*self._fixed/1.7979
elif self._emode == 'Efixed':
amu_tot_i = amu_scat + sig_abs*self._fixed/1.7979
amu_tot_s = amu_scat + sig_abs*self._fixed/1.7979
(Ass, Assc, Acsc, Acc) = self._acyl(theta, amu_scat, amu_tot_i, amu_tot_s)
A1.append(Ass)
A2.append(Assc)
A3.append(Acsc)
A4.append(Acc)
return A1, A2, A3, A4
#------------------------------------------------------------------------------
def _acyl(self, theta, amu_scat, amu_tot_i, amu_tot_s):
A = self._beam[1]
Area_s = 0.0
Ass = 0.0
Acc = 0.0
Acsc = 0.0
Assc = 0.0
nan = self._number_can
if self._number_can < 2:
#
# No. STEPS ARE CHOSEN SO THAT STEP WIDTH IS THE SAME FOR ALL ANNULI
#
AAAA, BBBA, Area_A = self._sum_rom(0, 0, A, self._radii[0], self._radii[1], self._ms,
theta, amu_scat, amu_tot_i, amu_tot_s)
AAAB, BBBB, Area_B = self._sum_rom(0, 0, -A, self._radii[0], self._radii[1], self._ms,
theta, amu_scat, amu_tot_i, amu_tot_s)
Area_s += Area_A + Area_B
Ass += AAAA + AAAB
Ass /= Area_s
else:
for i in range(0, self._number_can -1):
radius_1 = self._radii[i]
radius_2 = self._radii[i+1]
#
# No. STEPS ARE CHOSEN SO THAT STEP WIDTH IS THE SAME FOR ALL ANNULI
#
ms = int(self._ms*(radius_2 - radius_1)/(self._radii[1] - self._radii[0]))
if ms < 1:
ms = 1
AAAA, BBBA, Area_A = self._sum_rom(i, 0, A, radius_1, radius_2,
ms, theta, amu_scat, amu_tot_i, amu_tot_s)
AAAB, BBBB, Area_B = self._sum_rom(i, 0, -A, radius_1, radius_2,
ms, theta, amu_scat, amu_tot_i, amu_tot_s)
Area_s += Area_A + Area_B
Ass += AAAA + AAAB
Assc += BBBA + BBBB
Ass = Ass/Area_s
Assc = Assc/Area_s
radius_1 = self._radii[nan -1]
radius_2 = self._radii[nan]
ms = int(self._ms*(radius_2 - radius_1)/(self._radii[1] - self._radii[0]))
if ms < 1:
ms = 1
AAAA, BBBA, Area_A = self._sum_rom(nan-1, 1, A, radius_1, radius_2,
ms, theta, amu_scat, amu_tot_i, amu_tot_s)
AAAB, BBBB, Area_B = self._sum_rom(nan-1, 1, -A, radius_1, radius_2,
ms, theta, amu_scat, amu_tot_i, amu_tot_s)
Area_C = Area_A + Area_B
Acsc = (AAAA + AAAB)/Area_C
Acc = (BBBA + BBBB)/Area_C
return Ass, Assc, Acsc, Acc
#------------------------------------------------------------------------------
def _sum_rom(self, n_scat, n_abs, a, r1, r2, ms, theta, amu_scat, amu_tot_i, amu_tot_s):
#n_scat is region for scattering
#n_abs is region for absorption
nan = self._number_can
omega_add = 0.
if a < 0.:
omega_add = math.pi
AAA = 0.
BBB = 0.
Area = 0.
theta_deg = math.pi - theta
num = ms
r_step = (r2 - r1)/ms
r_add = -0.5*r_step + r1
# start loop over M
for M in range(1, num+1):
r = M*r_step + r_add
number_omega = int(math.pi*r/r_step)
omega_ster = math.pi/number_omega
omega_deg = -0.5*omega_ster + omega_add
Area_y = r*r_step*omega_ster*amu_scat[n_scat]
sum_1 = 0.
sum_2 = 0.
I = 1
Area_sum = 0.
for _ in range(1, number_omega +1):
omega = I*omega_ster + omega_deg
distance = r*math.sin(omega)
skip = True
if abs(distance) <= a:
#
# CALCULATE DISTANCE INCIDENT NEUTRON PASSES THROUGH EACH ANNULUS
LIS = []
for j in range(0, nan):
LIST = self._distance(r, self._radii[j], omega)
LISN = self._distance(r, self._radii[j+1], omega)
LIS.append(LISN - LIST)
#
# CALCULATE DISTANCE SCATTERED NEUTRON PASSES THROUGH EACH ANNULUS
O = omega + theta_deg
LSS = []
for j in range(0, nan):
LSST = self._distance(r, self._radii[j], O)
LSSN = self._distance(r, self._radii[j+1], O)
LSS.append(LSSN - LSST)
#
# CALCULATE ABSORPTION FOR PATH THROUGH ALL ANNULI,AND THROUGH INNER ANNULI
path = np.zeros(3)
# split into input (I) and scattered (S) paths
path[0] += amu_tot_i[0]*LIS[0] + amu_tot_s[0]*LSS[0]
if nan == 2:
path[2] += amu_tot_i[1]*LIS[1] + amu_tot_s[1]*LSS[1]
path[1] = path[0] + path[2]
sum_1 += math.exp(-path[n_abs])
sum_2 += math.exp(-path[n_abs +1])
Area_sum += 1.0
skip = False
if skip:
I = number_omega -I +2
else:
I += 1
AAA += sum_1*Area_y
BBB += sum_2*Area_y
Area += Area_sum*Area_y
return AAA, BBB, Area
#------------------------------------------------------------------------------
def _distance(self, r1, radius, omega):
r = r1
distance = 0.
b = r*math.sin(omega)
if abs(b) < radius:
t = r*math.cos(omega)
c = radius*radius -b*b
d = math.sqrt(c)
if r <= radius:
distance = t + d
else:
distance = d*(1.0 + math.copysign(1.0, t))
return distance
#------------------------------------------------------------------------------
# Register algorithm with Mantid
AlgorithmFactory.subscribe(CylinderPaalmanPingsCorrection)