This page is to summarize important materials about dynamic (temporal) knowledge graph completion and dynamic graph embedding.
- Temporal Knowledge Graph Completion
- Dynamic Graph Embedding
- Knowledge Graph Embedding
- Static Graph Embedding
- Survey
- Others
- Useful Libararies
- Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs
- Rakshit Trivedi, Hanjun Dai, Yichen Wang, Le Song. ICML 2017.
- Video
- Code (cpp)
- Learning Sequence Encoders for Temporal Knowledge Graph Completion
- Alberto Garcia-Duran, Sebastijan Dumancic, Mathias Niepert. EMNLP 2018.
- Towards time-aware knowledge graph completion
- Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian Li and Zhifang Sui. COLING 2016
- Predicting the co-evolution of event and knowledge graphs
- Cristóbal Esteban, Volker Tresp, Yinchong Yang, Stephan Baier, Denis Krompaß. FUSION 2016.
- Deriving validity time in knowledge graph
- Julien Leblay and Melisachew Wudage Chekol. WWW 2018.
- HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding
- Shib Sankar Dasgupta, Swayambhu Nath Ray, Partha Talukdar. EMNLP 2018.
- Code (TF based)
- Representation Learning over Dynamic Graphs
- Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha. ArXiv.
- DyREP: Learning Representations over Dynamic Graphs
- DynGEM: Deep Embedding Method for Dynamic Graphs
- Palash Goyal, Nitin Kamra, Xinran He, Yan Liu. ArXiv.
- Graph2Seq: Scalable Learning Dynamics for Graphs
- Anonymous, under review at ICLR 2019.
- Dynamic Graph Representation Learning via Self-Attention Networks
- Anonymous, under review at ICLR 2019.
- Continuous-Time Dynamic Network Embeddings
- Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim. WWW 2018.
- GC-LSTM: Graph Convolution Embedded LSTM for Dynamic Link Prediction
- Jinyin Chen, Xuanheng Xu, Yangyang Wu, Haibin Zheng
- Learning Dynamic Embeddings from Temporal Interaction Networks
- Srijan Kumar, Xikun Zhang, Jure Leskovec
- Dynamic Graph Convolutional Networks
- Franco Manessi, Alessandro Rozza, Mario Manzo
- Streaming Graph Neural Networks
- Yao Ma, Ziyi Guo, Zhaochun Ren, Eric Zhao, Jiliang Tang, Dawei Yin
- dynnode2vec: Scalable Dynamic Network Embedding
- Sedigheh Mahdavi, Shima Khoshraftar, Aijun An
- Dynamic Network Embedding:An Extended Approach for Skip-gram based Network Embedding
- Lun Du, Yun Wang, Guojie Song, Zhicong Lu, Junshan Wang
- Modeling Relational Data with Graph Convolutional Networks
- Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. ESWC 2018.
- Code (Keras based), Code (TF based)
- Neural Relational Inference for Interacting Systems
- Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel. ICML 2018.
- Code (Pytorch based)
- Interpretable Graph Convolutional Neural Networks for Inference on Noisy Knowledge Graphs
- Daniel Neil, Joss Briody, Alix Lacoste, Aaron Sim, Paidi Creed, Amir Saffari
- Inductive Representation Learning on Large Graphs
- William L. Hamilton, Rex Ying, Jure Leskovec
- Code (TF based), Code (Pytorch based)
- Graph Convolutional Neural Networks for Web-Scale Recommender Systems
- Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec
- Stochastic Training of Graph Convolutional Networks with Variance Reduction
- Jianfei Chen, Jun Zhu, Le Song
- A Higher-Order Graph Convolutional Layer
- Sami Abu-El-Haija, Nazanin Alipourfard, Hrayr Harutyunyan, Amol Kapoor, Bryan Perozzi
- Higher-order Graph Convolutional Networks
- John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and Anup Rao
- Deep Learning on Graphs: A Survey
- Ziwei Zhang, Peng Cui, Wenwu Zhu
- Graph Neural Networks: A Review of Methods and Applications
- Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun
- A Comprehensive Survey on Graph Neural Networks
- Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu
- A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications
- Hongyun Cai, Vincent W. Zheng, Kevin Chen-Chuan Chang
- How Powerful are Graph Neural Networks?
- Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. ICLR 2019.
- Temporal Convolutional Networks: A Unified Approach to Action Segmentation
- Colin Lea, Rene Vidal, Austin Reiter, Gregory D. Hager
- What to Do Next: Modeling User Behaviors by Time-LSTM
- Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, Deng Cai. IJCAI 2017.
- Patient Subtyping via Time-Aware LSTM Networks
- Inci M. Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain, Jiayu Zhou. KDD 2017.