Skip to content

nrimsky/CAA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Steering Llama 2 with Contrastive Activation Addition

Setup

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Then create a .env file with the following variables (see .env.example):

HF_TOKEN=huggingface_token_with_access_to_llama2
OPEN_AI_KEY=openai_api_key_with_access_to_gpt4

Datasets

All raw and processed data can be seen in /datasets. Original sources are listed below. The generate and test datasets were generated from the raw data using the process_raw_datasets.py script.

We use 50 of the contrast pairs for evaluation. The rest are used for generating steering vectors.

Coordination with other AIs (coordinate-other-ais)

Anthropic human generated eval data.

Corrigibility (corrigible-neutral-HHH)

Anthropic human generated eval data.

Hallucination (hallucination)

Generated using GPT-4 by Wuschel Schulz (source)

Myopia (myopic-reward)

Anthropic human generated eval data.

Survival Instinct (survival-instinct)

Anthropic human generated eval data.

Sycophancy (sycophancy)

Mixture of Anthropic's Sycophancy datasets.

Refusal (refusal)

Generated using GPT-4.

TruthfulQA (truthfulqa) (test only)

MMLU (mmlu) (test only)

mmlu_full.json is the full MMLU test dataset formatted as A/B questions. mmlu.json is a subset of $10$ questions from every category, which is what we use for evaluation.

Final dataset sizes

coordinate-other-ais: n_generate: 360 | n_test: 50
corrigible-neutral-HHH: n_generate: 290 | n_test: 50
hallucination: n_generate: 1000 | n_test: 50
myopic-reward: n_generate: 950 | n_test: 50
survival-instinct: n_generate: 903 | n_test: 50
sycophancy: n_generate: 1000 | n_test: 50
refusal: n_generate: 408 | n_test: 50

Evaluation

For each behavior, we can evaluate the model on the following test sets:

  • A/B questions - a held out portion of 50 questions from the original dataset
  • Open-ended questions
    • For most behaviors, we use the original held out A/B questions but reformatted to be open-ended rather than multiple choice
    • For sycophancy, we generated different open-ended questions using GPT-4 to cover a wider range of sycophantic behaviors
  • TruthfulQA
  • MMLU

Available commands

# Generate steering vectors for layers of the model for a certain behavior
python generate_vectors.py --layers $(seq 0 31) --save_activations --model_size "7b" --behaviors sycophancy

# Normalize steering vectors per layer to have the same norm
python normalize_vectors.py

# Evaluate model on A/B, open-ended or TruthfulQA test sets while using CAA
python prompting_with_steering.py --behaviors sycophancy --layers $(seq 0 31) --multipliers -1 0 1 --type ab --model_size "7b"
python prompting_with_steering.py --behaviors sycophancy --layers 13 --multipliers -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 --type ab --model_size "7b" --system_prompt pos

# Plot PCA of constrastive activations
python plot_activations.py --behaviors sycophancy --layers $(seq 0 31) --model_size "7b"

# Plot results of CAA steering effect
python plot_results.py --layers $(seq 0 31) --multipliers 1 --type ab
python plot_results.py --layers $(seq 0 31) --multipliers -1 0 1 --behaviors sycophancy --type ab

# Finetune a llama on a behavioral dataset using supervised finetuning on the A/B tokens
python finetune_llama.py --behavior sycophancy --direction pos

# Plot similarites of steering vectors
python analyze_vectors.py

# Use GPT-4 to score open-ended responses
python scoring.py

Running tests

I have added a few unit tests for some of the utility functions. To run them, simply run:

pytest

TODO: add more unit tests

Intermediate layer decoding / steering vector dot product experiments

See /activation_steering_interp.ipynb

Vectors for use

Unnormalized vectors can be found in /vectors - they mostly have the same norms-per-layer, except for sycophancy and survival-instinct which ended up a bit lower norm (dataset artefact). Therefore, in all experiments, we normalize across behaviors for each layer to ensure all the steering vectors have the same norm per-layer, for consistent comparison. The script that does this is in normalize_vectors.py. prompting_with_steering.py uses the normalized vectors.

License

This project is licensed under the MIT License - see the LICENSE file for details.