v1.12.1

@charris charris released this Mar 18, 2017 · 3265 commits to master since this release

==========================
NumPy 1.12.1 Release Notes

NumPy 1.12.1 supports Python 2.7 and 3.4 - 3.6 and fixes bugs and regressions
found in NumPy 1.12.0. In particular, the regression in f2py constant parsing
is fixed. Wheels for Linux, Windows, and OSX can be found on pypi,

Contributors

A total of 10 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • Charles Harris
  • Eric Wieser
  • Greg Young
  • Joerg Behrmann +
  • John Kirkham
  • Julian Taylor
  • Marten van Kerkwijk
  • Matthew Brett
  • Shota Kawabuchi
  • Jean Utke +

Fixes Backported

  • #8483: BUG: Fix wrong future nat warning and equiv type logic error...
  • #8489: BUG: Fix wrong masked median for some special cases
  • #8490: DOC: Place np.average in inline code
  • #8491: TST: Work around isfinite inconsistency on i386
  • #8494: BUG: Guard against replacing constants without '_' spec in f2py.
  • #8524: BUG: Fix mean for float 16 non-array inputs for 1.12
  • #8571: BUG: Fix calling python api with error set and minor leaks for...
  • #8602: BUG: Make iscomplexobj compatible with custom dtypes again
  • #8618: BUG: Fix undefined behaviour induced by bad __array_wrap__
  • #8648: BUG: Fix MaskedArray.__setitem__
  • #8659: BUG: PPC64el machines are POWER for Fortran in f2py
  • #8665: BUG: Look up methods on MaskedArray in _frommethod
  • #8674: BUG: Remove extra digit in binary_repr at limit
  • #8704: BUG: Fix deepcopy regression for empty arrays.
  • #8707: BUG: Fix ma.median for empty ndarrays

Checksums

MD5

ca6c4a370f76bb461f7c3e254c45db02  numpy-1.12.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
71c887adb4cf6a374ff4a83115c8860b  numpy-1.12.1-cp27-cp27m-manylinux1_i686.whl
614755c8ee8408b83bd1ba837b6034b2  numpy-1.12.1-cp27-cp27m-manylinux1_x86_64.whl
3ec80a7e027146d4fad10f85426af256  numpy-1.12.1-cp27-cp27mu-manylinux1_i686.whl
471f740f61f7fba1a1a1e526bf710c49  numpy-1.12.1-cp27-cp27mu-manylinux1_x86_64.whl
906d8d8e1cb6a5056e0405d5b54d6440  numpy-1.12.1-cp27-none-win32.whl
7cd640cdcb6b80fa501d377bf883ec61  numpy-1.12.1-cp27-none-win_amd64.whl
2d89d21806408befdc20b5c9e8bfd354  numpy-1.12.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e5e9c27564bd41d88df001c2cc0ace7b  numpy-1.12.1-cp34-cp34m-manylinux1_i686.whl
6288d4e9cfea859e03dc82879539d029  numpy-1.12.1-cp34-cp34m-manylinux1_x86_64.whl
7e08d4f57dc51c7916042670753c0462  numpy-1.12.1-cp34-none-win32.whl
cac2b18bde8a76537762e8acfb25c89d  numpy-1.12.1-cp34-none-win_amd64.whl
ebd51c3549ee44a57af0f35a9f5b2b02  numpy-1.12.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
5bb0426593f74b922f1e549cde412f4b  numpy-1.12.1-cp35-cp35m-manylinux1_i686.whl
c372561ab420e6e18eb8f2e7da24f1fd  numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl
9d2d3a0d9af306c51255ced96244213f  numpy-1.12.1-cp35-none-win32.whl
4b32dcd1c59804f53cb9473d99673ea5  numpy-1.12.1-cp35-none-win_amd64.whl
a1d17430e3688e962feac3ec0d2f12c2  numpy-1.12.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c1f1c64b9d421c8715e476ae8a9d274e  numpy-1.12.1-cp36-cp36m-manylinux1_i686.whl
fbebdc68b7698e00c07bf4ddae0fb717  numpy-1.12.1-cp36-cp36m-manylinux1_x86_64.whl
3e3110a79b3ce9feb8af31aaf3b47003  numpy-1.12.1-cp36-none-win32.whl
0c753fec7a10e3778215eb9f7c6f43f4  numpy-1.12.1-cp36-none-win_amd64.whl
2abe6efb8ea0ac1716d1fc5fa90cbacf  numpy-1.12.1.tar.gz
c75b072a984028ac746a6a332c209a91  numpy-1.12.1.zip

SHA256

3b21dc40fa1e2450dee8cf54991b0f95c415ac508d5db1227338efcf03c162cd  numpy-1.12.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
405ce136edb18c6f1f8c5acc75d7d8fbb875cc8b5015562251b93435099233d3  numpy-1.12.1-cp27-cp27m-manylinux1_i686.whl
ca917155b35b3bcc68ef1ad82570a29414f5088495ea8f68c65b071c50e64340  numpy-1.12.1-cp27-cp27m-manylinux1_x86_64.whl
7e9015bc5de54c8bd73ca750ccedfda25d34a25a767caf802740d35a692ec3ab  numpy-1.12.1-cp27-cp27mu-manylinux1_i686.whl
cd7892f7d644d1b4ed2ead254d4851616c07ecf82618e3203e2a81747ffb6069  numpy-1.12.1-cp27-cp27mu-manylinux1_x86_64.whl
56e68de63ae738f40669b6a5f0601f9453940a0470a1e9bea16448e5b53f5f28  numpy-1.12.1-cp27-none-win32.whl
95e52d1077abeead6d205c1fc644f075228813859bb625960c1ae1248c4189ba  numpy-1.12.1-cp27-none-win_amd64.whl
bcbce5ef18dc826ef67756a0d3669baca815c8d44b26867c6865f714a23d9262  numpy-1.12.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d8dbd7e35e4819e059a044c7545d5602937d6b666dbd9b6eb8ff40037ab0980c  numpy-1.12.1-cp34-cp34m-manylinux1_i686.whl
4eac5f2f624c5e7eecbdb51395ff39a099c48cab607a158f16f288c6fe39a2b3  numpy-1.12.1-cp34-cp34m-manylinux1_x86_64.whl
9cd16915a815c2f04633d14e7640083c1b72e82b325439c91370adfd376c9975  numpy-1.12.1-cp34-none-win32.whl
4c64d9c389827f310c7f4e7887b741c34c6b2c337ff63a12f66ef0197fdf5366  numpy-1.12.1-cp34-none-win_amd64.whl
9ce673bb7b6240b94b60b52186f5c0825f4b31e8191c8bc7412a7d0348fca2cd  numpy-1.12.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
130105bfc0b03245115da67b441c48597bf1ed7f5385f8388ce4f75cdf2f91d2  numpy-1.12.1-cp35-cp35m-manylinux1_i686.whl
92dce120e385767cbe433719b5e3fdb1ac81907140d3984b3187208f79aff19f  numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl
e97cecd783e8e7e70d18a42f6df7f18be14cbcc82fb9b837b03d072d1401ae53  numpy-1.12.1-cp35-none-win32.whl
818d5a1d5752d09929ce1ba1735366d5acc769a1839386dc91f3ac30cf9faf19  numpy-1.12.1-cp35-none-win_amd64.whl
43ccfed0092def52b924e004780517c762f8fce3ececbd3f8e2580ac0538bb5e  numpy-1.12.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
5cb6341fc885b101978328d3c8d51a069a97a00699a30891106ef7dda56a0d30  numpy-1.12.1-cp36-cp36m-manylinux1_i686.whl
5dd60892710df0ef654bbf4d1e3cb53ac79845e55a96e4a26dd47218e06d819a  numpy-1.12.1-cp36-cp36m-manylinux1_x86_64.whl
727d6373355b00b96d9320254a676b878d6cd43ae409186bec27eec3e5e4e6e7  numpy-1.12.1-cp36-none-win32.whl
47b4c4da2fe0618b65fd70987a414fdc24c09e1ffdff77f7147a3c6627b07596  numpy-1.12.1-cp36-none-win_amd64.whl
d56d7fff81e844a407afa0503080c814e5d87678e338a73b8d8f98137713cfa9  numpy-1.12.1.tar.gz
a65266a4ad6ec8936a1bc85ce51f8600634a31a258b722c9274a80ff189d9542  numpy-1.12.1.zip