-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathevaluation_metrics_fast.py
687 lines (610 loc) · 25.9 KB
/
evaluation_metrics_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
"""
copied and modified from
https://github.com/luost26/diffusion-point-cloud/blob/910334a8975aa611423a920869807427a6b60efc/evaluation/evaluation_metrics.py
and
https://github.com/stevenygd/PointFlow/tree/b7a9216ffcd2af49b24078156924de025c4dbfb6/metrics
"""
import torch
import time
from tabulate import tabulate
import numpy as np
from loguru import logger
import warnings
from scipy.stats import entropy
from sklearn.neighbors import NearestNeighbors
from numpy.linalg import norm
from utils.exp_helper import ExpTimer
from third_party.PyTorchEMD.emd_nograd import earth_mover_distance_nograd
from third_party.PyTorchEMD.emd import earth_mover_distance
from third_party.ChamferDistancePytorch.chamfer3D.dist_chamfer_3D import chamfer_3DDist_nograd, chamfer_3DDist
from utils.checker import *
import torch.nn.functional as F
def distChamferCUDA_l1(pred, target, points_dim=3):
import models.pvcnn.functional as pvcnn_fun
# expect B.2048.3 and B.2048.3
B = pred.shape[0]
CHECKDIM(pred, 2, points_dim)
CHECKDIM(target, 2, points_dim)
CHECK3D(pred)
CHECK3D(target)
target_nndist, pred_nndist, target_nnidx, pred_nnidx \
= chamfer_3DDist()(target[:, :, :3], pred[:, :, :3])
target_normal = target.contiguous().permute(0, 2, 1).contiguous() # BN3->B3N
pred_normal = pred.contiguous().permute(0, 2, 1).contiguous() # BN3->B3N
target_point_normal = pvcnn_fun.grouping(
target_normal, pred_nnidx[:, :, None]) # B,3,Np,1
target_point_normal = target_point_normal.squeeze(-1) # B,3,Np
cham_norm_y = F.l1_loss(pred_normal.view(-1, points_dim),
target_point_normal.view(-1, points_dim),
reduction='sum')
closest_pred_point_normal = pvcnn_fun.grouping(
pred_normal, target_nnidx[:, :, None]).squeeze(-1) # B,3,Np,1 -> B,3,Np,
cham_norm_y2 = F.l1_loss(closest_pred_point_normal.view(-1, points_dim),
target_normal.view(-1, points_dim),
reduction='sum')
return cham_norm_y, cham_norm_y2
## target_nndist, pred_nndist, cham_norm_y, pred_with_gt_normal
# return nn_distance(x, y)
#def distChamferCUDA_withnormal(pred, target, normal_loss='cos'):
# # expect B.2048.3 and B.2048.3
# import models.pvcnn.functional as pvcnn_fun
# B = pred.shape[0]
# CHECKDIM(pred, 2, 6)
# CHECKDIM(target, 2, 6)
# CHECK3D(pred)
# CHECK3D(target)
#
# target_nndist, pred_nndist, target_nnidx, pred_nnidx \
# = chamfer_3DDist()(target[:, :, :3], pred[:, :, :3])
# target_normal = target[:, :, 3:].contiguous().permute(
# 0, 2, 1).contiguous() # BN3->B3N
# pred_normal = pred[:, :, 3:].contiguous().permute(
# 0, 2, 1).contiguous() # BN3->B3N
# target_point_normal = pvcnn_fun.grouping(
# target_normal, pred_nnidx[:, :, None]) # B,3,Np,1
# target_point_normal = target_point_normal.squeeze(-1) # B,3,Np
# if normal_loss == 'cos':
# pred_normal = pred_normal / \
# (1e-8 + (pred_normal**2).sum(1, keepdim=True).sqrt())
# cham_norm_y = 1 - torch.abs(
# F.cosine_similarity(pred_normal, target_point_normal,
# dim=1, eps=1e-6))
# elif normal_loss == 'l2':
# cham_norm_y = F.mse_loss(pred_normal.view(B, -1), target_point_normal.view(B, -1),
# reduction='none').view(B, 3, -1).mean(1)
# else:
# raise NotImplementedError(normal_loss)
# pred_with_gt_normal = torch.cat([pred[:, :, :3], target_point_normal.permute(0, 2, 1)],
# dim=2).contiguous()
# CHECKEQ(cham_norm_y.shape[-1], pred_nndist.shape[-1])
#
# return target_nndist, pred_nndist, cham_norm_y, pred_with_gt_normal
# # return nn_distance(x, y)
def distChamferCUDA(x, y):
# expect B.2048.3 and B.2048.3
B = x.shape[0]
CHECKDIM(x, 2, 3)
CHECKDIM(y, 2, 3)
CHECK3D(x)
CHECK3D(y)
# assert (x.shape[-1] == 3
# and y.shape[-1] == 3), f'get {x.shape} and {y.shape}'
dist1, dist2, _, _ = chamfer_3DDist()(x.cuda(), y.cuda())
return dist1, dist2
def distChamferCUDAnograd(x, y):
# expect B.2048.3 and B.2048.3
assert (x.shape[-1] == 3
and y.shape[-1] == 3), f'get {x.shape} and {y.shape}'
# return nn_distance_nograd(x, y)
# dist1, _, dist2, _ = NNDistance(x, y)
dist1, dist2, _, _ = chamfer_3DDist_nograd()(x.cuda(), y.cuda())
return dist1, dist2
def emd_approx(sample, ref, require_grad=True):
#B, N, N_ref = sample.size(0), sample.size(1), ref.size(1)
#assert N == N_ref, f"Not sure what would EMD do in this case; get N={N};N_ref={N_ref}"
# if not require_grad:
# t00 = time.time()
# match, _ = ApproxMatch(sample, ref)
# print('am: ', time.time() - t00)
# emd = MatchCost(sample, ref, match)
# del match
# # emd = match_cost_nograd(sample, ref)
# else:
# logger.info('error, required require_grad for faster compute ')
# exit()
# emd = match_cost(sample, ref) # (B,)
# emd_norm = emd / float(N) # (B,)
# logger.info('emd_norm: {} | sample: {}, ref: {}',
# emd_norm.shape, sample.shape, ref.shape)
if not require_grad:
emd_pyt = earth_mover_distance_nograd(
sample.cuda(), ref.cuda(), transpose=False)
else:
emd_pyt = earth_mover_distance(
sample.cuda(), ref.cuda(), transpose=False)
#logger.info('emd_pyt: {}, diff: {}', emd_pyt.shape, ((emd_pyt - emd_norm)**2).sum())
return emd_pyt
# def emd_approx(sample, ref, require_grad=True):
# B, N, N_ref = sample.size(0), sample.size(1), ref.size(1)
# assert N == N_ref, f"Not sure what would EMD do in this case; get N={N};N_ref={N_ref}"
# if not require_grad:
# t00 = time.time()
# match, _ = ApproxMatch(sample, ref)
# print('am: ', time.time() - t00)
# emd = MatchCost(sample, ref, match)
# del match
# # emd = match_cost_nograd(sample, ref)
# else:
# logger.info('error, required require_grad for faster compute ')
# exit()
# emd = match_cost(sample, ref) # (B,)
# emd_norm = emd / float(N) # (B,)
# logger.info('emd_norm: {} | sample: {}, ref: {}',
# emd_norm.shape, sample.shape, ref.shape)
# return emd_norm
# Borrow from https://github.com/ThibaultGROUEIX/AtlasNet
def distChamfer(a, b):
x, y = a, b
bs, num_points, points_dim = x.size()
xx = torch.bmm(x, x.transpose(2, 1))
yy = torch.bmm(y, y.transpose(2, 1))
zz = torch.bmm(x, y.transpose(2, 1))
diag_ind = torch.arange(0, num_points).to(a).long()
rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx)
ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy)
P = (rx.transpose(2, 1) + ry - 2 * zz)
return P.min(1)[0], P.min(2)[0]
def EMD_CD(sample_pcs,
ref_pcs,
batch_size,
accelerated_cd=False,
reduced=True,
require_grad=False):
N_sample = sample_pcs.shape[0]
N_ref = ref_pcs.shape[0]
assert N_sample == N_ref, "REF:%d SMP:%d" % (N_ref, N_sample)
cd_lst = []
emd_lst = []
iterator = range(0, N_sample, batch_size)
for b_start in iterator:
b_end = min(N_sample, b_start + batch_size)
sample_batch = sample_pcs[b_start:b_end]
ref_batch = ref_pcs[b_start:b_end]
if accelerated_cd and not require_grad:
dl, dr = distChamferCUDAnograd(sample_batch, ref_batch)
elif accelerated_cd:
dl, dr = distChamferCUDA(sample_batch, ref_batch)
else:
dl, dr = distChamfer(sample_batch, ref_batch)
cd_lst.append(dl.mean(dim=1) + dr.mean(dim=1))
emd_batch = emd_approx(sample_batch, ref_batch,
require_grad=require_grad)
emd_lst.append(emd_batch)
if reduced:
cd = torch.cat(cd_lst).mean()
emd = torch.cat(emd_lst).mean()
else:
cd = torch.cat(cd_lst)
emd = torch.cat(emd_lst)
results = {
'MMD-CD': cd,
'MMD-EMD': emd,
}
return results
def formulate_results(results, dataset, hash, step, epoch):
reported = f'S{step}E{epoch}'
reported = '' if reported == 'SE' else reported
msg_head, msg_oneline = '', ''
if dataset != '-':
msg_head += "Dataset "
msg_oneline += f"{dataset} "
if hash != '-':
msg_head += "Model "
msg_oneline += f"{hash} "
if step != '' or epoch != '':
msg_head += 'reported '
msg_oneline += f"{reported} "
msg_head += "MMD-CDx0.001\u2193 MMD-EMDx0.01\u2193 COV-CD%\u2191 COV-EMD%\u2191 1-NNA-CD%\u2193 1-NNA-EMD%\u2193 JSD\u2193"
msg_oneline += f"{results.get('lgan_mmd-CD', 0)*1000:.4f} {results.get('lgan_mmd-EMD', 0)*100:.4f} {results.get('lgan_cov-CD', 0)*100:.2f} {results.get('lgan_cov-EMD', 0)*100:.2f} {results.get('1-NN-CD-acc', 0)*100:.2f} {results.get('1-NN-EMD-acc', 0)*100:.2f} {results.get('jsd', 0):.2f}"
if results.get('url', None) is not None:
msg_head += " url"
msg_oneline += f" {results.get('url', '-')}"
msg_oneline = msg_oneline.split(' ')
msg_head = msg_head.split(' ')
return msg_head, msg_oneline
def write_results(out_file, results, dataset='', hash='', step='', epoch=''):
msg_head, msg_oneline = formulate_results(
results, dataset, hash, step, epoch)
content2 = tabulate([msg_oneline], msg_head, tablefmt="tsv")
text_file = open(out_file, "a")
text_file.write(content2+'\n')
text_file.close()
return content2
def print_results(results, dataset='-', hash='-', step='', epoch=''):
msg_head, msg_oneline = formulate_results(
results, dataset, hash, step, epoch)
msg = '{}'.format(
tabulate([msg_oneline], msg_head, tablefmt="plain"))
logger.info('\n{}', msg)
return msg
def _pairwise_EMD_CD_sub(metric, sample_batch, ref_pcs, N_ref, batch_size, accelerated_cd, verbose, require_grad):
cd_lst = []
emd_lst = []
sub_iterator = range(0, N_ref, batch_size)
total_iter = int(N_ref / float(batch_size) + 0.5)
# if verbose:
# import tqdm
# sub_iterator = tqdm.tqdm(sub_iterator, leave=False)
#t00 = time.time()
iter_id = 0
for ref_b_start in sub_iterator:
ref_b_end = min(N_ref, ref_b_start + batch_size)
ref_batch = ref_pcs[ref_b_start:ref_b_end]
batch_size_ref = ref_batch.size(0)
point_dim = ref_batch.size(2)
sample_batch_exp = sample_batch.view(1, -1, point_dim).expand(
batch_size_ref, -1, -1)
sample_batch_exp = sample_batch_exp.contiguous()
# print('before cuda {:.5f}s'.format(time.time() - t00))
# t00 = time.time()
if metric == 'CD':
if accelerated_cd and not require_grad:
dl, dr = distChamferCUDAnograd(sample_batch_exp, ref_batch)
elif accelerated_cd:
dl, dr = distChamferCUDA(sample_batch_exp, ref_batch)
else:
dl, dr = distChamfer(sample_batch_exp, ref_batch)
# print('cuda: {:.5f}'.format(time.time() - t00))
#t00 = time.time()
cd_lst.append(((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1))
)
elif metric == 'EMD':
emd_batch = emd_approx(
sample_batch_exp, ref_batch, require_grad=require_grad)
emd_lst.append(emd_batch.view(1, -1))
else:
raise NotImplementedError
# torch.cuda.empty_cache()
# print('approx: {:.5f}'.format(time.time() - t00))
if metric == 'CD':
cd_lst = torch.cat(cd_lst, dim=1)
return cd_lst, cd_lst
else:
emd_lst = torch.cat(emd_lst, dim=1)
return emd_lst, emd_lst
return cd_lst, emd_lst
def _pairwise_EMD_CD_(metric,
sample_pcs,
ref_pcs,
batch_size,
require_grad=True,
accelerated_cd=True,
verbose=True):
N_sample = sample_pcs.shape[0]
N_ref = ref_pcs.shape[0]
# N_sample = 50
all_cd, all_emd = [], []
iterator = range(N_sample)
total_iter = N_sample
exp_timer = ExpTimer(total_iter)
iter_id = 0
print_every = max(int(total_iter // 3), 5)
for i, sample_b_start in enumerate(iterator):
exp_timer.tic()
if iter_id % print_every == 0 and iter_id > 0 and verbose:
logger.info('done {:02.1f}%({}) eta={:.1f}m',
100.0*iter_id/total_iter, total_iter,
exp_timer.hours_left()*60)
sample_batch = sample_pcs[sample_b_start]
cd_lst, emd_lst = _pairwise_EMD_CD_sub(metric,
sample_batch, ref_pcs, N_ref, batch_size,
accelerated_cd, verbose, require_grad)
all_cd.append(cd_lst)
all_emd.append(emd_lst)
exp_timer.toc()
iter_id += 1
all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref
all_emd = torch.cat(all_emd, dim=0) # N_sample, N_ref
return all_cd, all_emd
# def _pairwise_EMD_CD_(sample_pcs,
# ref_pcs,
# batch_size,
# require_grad=True,
# accelerated_cd=True,
# verbose=True,
# bs=50):
## N_sample = sample_pcs.shape[0]
## N_ref = ref_pcs.shape[0]
# N_sample = 10
# all_cd = torch.zeros(N_sample, N_ref) #[]
# all_emd = torch.zeros(N_sample, N_ref)
# N_sample = 50
## all_cd, all_emd = [], []
## iterator = range(0, N_sample, bs)
# if verbose:
## import tqdm
## iterator = tqdm.tqdm(iterator)
# for i, sample_b_start in enumerate(iterator):
# if bs == 1:
## sample_batch = sample_pcs[sample_b_start]
# cd_lst, emd_lst = _pairwise_EMD_CD_sub(
## sample_batch, ref_pcs, N_ref, batch_size,
# accelerated_cd, verbose, require_grad)
# elif bs > 1:
## sample_b_end = min(N_sample, sample_b_start + bs)
# cd_lst, emd_lst = _pairwise_EMD_CD_(sample_pcs[sample_b_start:sample_b_end],
## ref_pcs, batch_size,
# require_grad=require_grad,
# accelerated_cd=accelerated_cd,
# verbose=verbose,
# bs=1)
##
# all_cd[i:i+1] = cd_lst.cpu()
# all_emd[i:i+1] = emd_lst.cpu()
# all_cd.append(cd_lst)
# all_emd.append(emd_lst)
##
# if (len(all_cd)+1) % 36 == 0:
# torch.cuda.empty_cache()
##
# all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref
# all_emd = torch.cat(all_emd, dim=0) # N_sample, N_ref
# return all_cd, all_emd
# torch.cuda.empty_cache()
# return all_cd.cpu(), all_emd.cpu()
# Adapted from https://github.com/xuqiantong/
# GAN-Metrics/blob/master/framework/metric.py
def knn(Mxx, Mxy, Myy, k, sqrt=False):
n0 = Mxx.size(0)
n1 = Myy.size(0)
#logger.info('n0={}, n1={}: ', Mxx.shape, Myy.shape)
#logger.info('Mxx={}, Myy={}, Mxy{}', Mxx, Myy, Mxy)
label = torch.cat((torch.ones(n0), torch.zeros(n1))).to(Mxx)
#logger.info('label: {}', label.shape)
M = torch.cat(
[torch.cat((Mxx, Mxy), 1),
torch.cat((Mxy.transpose(0, 1), Myy), 1)], 0)
if sqrt:
M = M.abs().sqrt()
INFINITY = float('inf')
val, idx = (M + torch.diag(INFINITY * torch.ones(n0 + n1).to(Mxx))).topk(
k, 0, False)
count = torch.zeros(n0 + n1).to(Mxx)
for i in range(0, k):
count = count + label.index_select(0, idx[i])
pred = torch.ge(count,
(float(k) / 2) * torch.ones(n0 + n1).to(Mxx)).float()
#logger.info('ored: {}, label: {}', pred, label)
s = {
'tp': (pred * label).sum(), # pred is 1, label is 1
'fp': (pred * (1 - label)).sum(), # pred is 1, label is 0
'fn': ((1 - pred) * label).sum(), # pred is 0, label is 1
'tn': ((1 - pred) * (1 - label)).sum(), # pred is 0, label is 0
}
#logger.info( 'label: {} | shape: {} ', label.sum(), label.shape)
#logger.info('s={}', s)
s.update({
'precision': s['tp'] / (s['tp'] + s['fp'] + 1e-10),
'recall': s['tp'] / (s['tp'] + s['fn'] + 1e-10),
'acc_t': s['tp'] / (s['tp'] + s['fn'] + 1e-10),
'acc_f': s['tn'] / (s['tn'] + s['fp'] + 1e-10),
'acc': torch.eq(label, pred).float().mean(),
})
return s
def lgan_mmd_cov(all_dist):
N_sample, N_ref = all_dist.size(0), all_dist.size(1)
min_val_fromsmp, min_idx = torch.min(all_dist, dim=1)
min_val, _ = torch.min(all_dist, dim=0)
mmd = min_val.mean()
mmd_smp = min_val_fromsmp.mean()
cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref)
cov = torch.tensor(cov).to(all_dist)
return {
'lgan_mmd': mmd,
'lgan_cov': cov,
'lgan_mmd_smp': mmd_smp,
}
def compute_all_metrics(sample_pcs, ref_pcs, batch_size,
verbose=True, accelerated_cd=False, metric1='CD',
metric2='EMD', **print_kwargs):
results = {}
## metric2 = 'EMD'
## metric1 = 'CD'
if verbose:
logger.info("Pairwise EMD CD")
batch_size = ref_pcs.shape[0] // 2 if ref_pcs.shape[0] != batch_size else batch_size
v1 = False
v2 = True if verbose else False
# --- eval CD results --- #
metric = metric1 # 'CD'
if verbose:
logger.info('eval metric: {}; batch-size={}, device: {}, {}',
metric, batch_size, ref_pcs.device, sample_pcs.device)
# batch_size = 100
# v1 = True
M_rs_cd, M_rs_emd = _pairwise_EMD_CD_(metric, ref_pcs,
sample_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v1)
M_rs_cd, M_rs_emd = _pairwise_EMD_CD_(metric, ref_pcs,
sample_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v1)
res_cd = lgan_mmd_cov(M_rs_cd.t())
results.update({'%s-%s' % (k, metric): v.item()
for k, v in res_cd.items()})
# logger.info('results: {}', results)
if verbose:
print_results(results, **print_kwargs)
M_rr_cd, M_rr_emd = _pairwise_EMD_CD_(metric, ref_pcs,
ref_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v1)
M_ss_cd, M_ss_emd = _pairwise_EMD_CD_(metric, sample_pcs,
sample_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v1)
# 1-NN results
one_nn_cd_res = knn(M_rr_cd, M_rs_cd, M_ss_cd, 1, sqrt=False)
results.update(
{"1-NN-%s-%s" % (metric, k): v.item()
for k, v in one_nn_cd_res.items() if 'acc' in k})
# logger.info('results: {}', results)
if verbose:
print_results(results, **print_kwargs)
#logger.info('early exit')
# exit()
# --- eval EMD results --- #
metric = metric2 # 'EMD'
if metric is not None:
if verbose:
logger.info('eval metric: {}', metric)
## batch_size = min(batch_size, 31)
M_rs_cd, M_rs_emd = _pairwise_EMD_CD_(metric, ref_pcs,
sample_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v2)
M_rs_cd, M_rs_emd = _pairwise_EMD_CD_(metric, ref_pcs,
sample_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v2)
res_cd = lgan_mmd_cov(M_rs_cd.t())
results.update({'%s-%s' % (k, metric): v.item()
for k, v in res_cd.items()})
if verbose:
print_results(results, **print_kwargs)
# logger.info('results: {}', results)
M_rr_cd, M_rr_emd = _pairwise_EMD_CD_(metric, ref_pcs,
ref_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v2)
M_ss_cd, M_ss_emd = _pairwise_EMD_CD_(metric, sample_pcs,
sample_pcs,
batch_size,
accelerated_cd=accelerated_cd,
require_grad=False, verbose=v2)
# 1-NN results
one_nn_cd_res = knn(M_rr_cd, M_rs_cd, M_ss_cd, 1, sqrt=False)
results.update(
{"1-NN-%s-%s" % (metric, k): v.item()
for k, v in one_nn_cd_res.items() if 'acc' in k})
if verbose:
print_results(results, **print_kwargs)
# logger.info('results: {}', results)
return results
#######################################################
# JSD : from https://github.com/optas/latent_3d_points
#######################################################
def unit_cube_grid_point_cloud(resolution, clip_sphere=False):
"""Returns the center coordinates of each cell of a 3D grid with
resolution^3 cells, that is placed in the unit-cube. If clip_sphere it True
it drops the "corner" cells that lie outside the unit-sphere.
"""
grid = np.ndarray((resolution, resolution, resolution, 3), np.float32)
spacing = 1.0 / float(resolution - 1)
for i in range(resolution):
for j in range(resolution):
for k in range(resolution):
grid[i, j, k, 0] = i * spacing - 0.5
grid[i, j, k, 1] = j * spacing - 0.5
grid[i, j, k, 2] = k * spacing - 0.5
if clip_sphere:
grid = grid.reshape(-1, 3)
grid = grid[norm(grid, axis=1) <= 0.5]
return grid, spacing
def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, resolution=28):
"""Computes the JSD between two sets of point-clouds,
as introduced in the paper
```Learning Representations And Generative Models For 3D Point Clouds```.
Args:
sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points.
ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points.
resolution: (int) grid-resolution. Affects granularity of measurements.
"""
in_unit_sphere = True
sample_grid_var = entropy_of_occupancy_grid(sample_pcs, resolution,
in_unit_sphere)[1]
ref_grid_var = entropy_of_occupancy_grid(ref_pcs, resolution,
in_unit_sphere)[1]
return jensen_shannon_divergence(sample_grid_var, ref_grid_var)
def entropy_of_occupancy_grid(pclouds,
grid_resolution,
in_sphere=False,
verbose=False):
"""Given a collection of point-clouds, estimate the entropy of
the random variables corresponding to occupancy-grid activation patterns.
Inputs:
pclouds: (numpy array) #point-clouds x points per point-cloud x 3
grid_resolution (int) size of occupancy grid that will be used.
"""
epsilon = 10e-4
bound = 0.5 + epsilon
if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound:
if verbose:
warnings.warn('Point-clouds are not in unit cube.')
if in_sphere and np.max(np.sqrt(np.sum(pclouds**2, axis=2))) > bound:
if verbose:
warnings.warn('Point-clouds are not in unit sphere.')
grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution,
in_sphere)
grid_coordinates = grid_coordinates.reshape(-1, 3)
grid_counters = np.zeros(len(grid_coordinates))
grid_bernoulli_rvars = np.zeros(len(grid_coordinates))
nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates)
for pc in pclouds:
_, indices = nn.kneighbors(pc)
indices = np.squeeze(indices)
for i in indices:
grid_counters[i] += 1
indices = np.unique(indices)
for i in indices:
grid_bernoulli_rvars[i] += 1
acc_entropy = 0.0
n = float(len(pclouds))
for g in grid_bernoulli_rvars:
if g > 0:
p = float(g) / n
acc_entropy += entropy([p, 1.0 - p])
return acc_entropy / len(grid_counters), grid_counters
def jensen_shannon_divergence(P, Q):
if np.any(P < 0) or np.any(Q < 0):
raise ValueError('Negative values.')
if len(P) != len(Q):
raise ValueError('Non equal size.')
P_ = P / np.sum(P) # Ensure probabilities.
Q_ = Q / np.sum(Q)
e1 = entropy(P_, base=2)
e2 = entropy(Q_, base=2)
e_sum = entropy((P_ + Q_) / 2.0, base=2)
res = e_sum - ((e1 + e2) / 2.0)
res2 = _jsdiv(P_, Q_)
if not np.allclose(res, res2, atol=10e-5, rtol=0):
warnings.warn('Numerical values of two JSD methods don\'t agree.')
return res
def _jsdiv(P, Q):
"""another way of computing JSD"""
def _kldiv(A, B):
a = A.copy()
b = B.copy()
idx = np.logical_and(a > 0, b > 0)
a = a[idx]
b = b[idx]
return np.sum([v for v in a * np.log2(a / b)])
P_ = P / np.sum(P)
Q_ = Q / np.sum(Q)
M = 0.5 * (P_ + Q_)
return 0.5 * (_kldiv(P_, M) + _kldiv(Q_, M))