Skip to content
/ ml_se Public

Machine Learning Course for Bachelor Students of Software Engineering

Notifications You must be signed in to change notification settings

oberonl/ml_se

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contacts

Telegram chat

Lecturers: Anna Kuzina; Evgenii Egorov

Class Teachers and TAs

Class Teachers Contact Group TA (contact)
Maria Tikhonova tg: @mashkka_t БПИ184 Alexandra Kogan (tg: @horror_in_black)
Maksim Karpov tg: @buntar29 БПИ181, БПИ182 Kirill Bykov (tg: @darkydash), Victor Grishanin (tg: @vgrishanin)
Polina Polinuna tg: @ppolunina БПИ185 Michail Kim (tg: @kimihailv)
Vadim Kokhtev tg: @despairazure БПИ183 Daniil Kosakin (tg: @nieto95)

Use this form to send feedback to the course team anytime

Recomended Literature

[PR] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.
Link

[ESL] Hastie, T., Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
Link

[FML] Mohri, M., Talwalkar, A., & Rostamizadeh, A. Second Edition, (2018). Foundations of Machine Learning. Cambridge, MA: The MIT Press.
Link

Class materials

Lectures

Date Topic Lecture materials Reading
30 jan Introduction Slides, Video [FML] Ch 1; [ESL] Ch 2.1-2.2
6 feb Gradient Optimization [FML] Appx A, B;
13 feb Linear Regression
20 feb Linear Classification
27 feb Logistic Regression and SVM
6 mar Decision Trees
13 mar Bagging, Random Forest
20 mar Gradient boosting

Practicals

Date Topic Materials Extra Reading/Practice
25-30 jan Basic toolbox Notebook; Dataset Python Crash Course
1-6 feb EDA and Scikit-learn Notebook
8-13 feb Calculus recap and Gradient Descent The Matrix Cookbook
15-20 feb Linear Regression
22-27 feb Classification
1-6 mar Texts and Multiclass classification
8-13 mar Decision Trees
15-20 mar Ensambles

Assignments

We'll be using AnyTask for grading: course link

Date Published Task Deadline
6 feb HW 1: Notebook, dataset 20 feb
20 feb HW 2: TBA 6 mar
6 mar HW 3: TBA 20 mar
20 mar HW 4: TBA 10 apr
24 apr HW 5: TBA 15 may
29 may HW 6 (Optional): TBA 19 jun

Grading

Final grade = 0.7*HW + 0.3*Exam

  • HW - Average grade for the assignments 1 to 5. You can get extra points by solving HW 6, but no more than 10 in total.
  • Exam - Grade for the exam

You can skip the exam if your average grade for the first 5 assignemnts is not smaller than 6 (HW >=6). In this case:

Final grade = HW

About

Machine Learning Course for Bachelor Students of Software Engineering

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published