Lecturers: Anna Kuzina; Evgenii Egorov
Class Teachers and TAs
Class Teachers | Contact | Group | TA (contact) |
---|---|---|---|
Maria Tikhonova | tg: @mashkka_t | БПИ184 | Alexandra Kogan (tg: @horror_in_black) |
Maksim Karpov | tg: @buntar29 | БПИ181, БПИ182 | Kirill Bykov (tg: @darkydash), Victor Grishanin (tg: @vgrishanin) |
Polina Polinuna | tg: @ppolunina | БПИ185 | Michail Kim (tg: @kimihailv) |
Vadim Kokhtev | tg: @despairazure | БПИ183 | Daniil Kosakin (tg: @nieto95) |
Use this form to send feedback to the course team anytime
[PR] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.
Link
[ESL] Hastie, T., Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
Link
[FML] Mohri, M., Talwalkar, A., & Rostamizadeh, A. Second Edition, (2018). Foundations of Machine Learning. Cambridge, MA: The MIT Press.
Link
Date | Topic | Lecture materials | Reading |
---|---|---|---|
30 jan | Introduction | Slides, Video | [FML] Ch 1; [ESL] Ch 2.1-2.2 |
6 feb | Gradient Optimization | [FML] Appx A, B; | |
13 feb | Linear Regression | ||
20 feb | Linear Classification | ||
27 feb | Logistic Regression and SVM | ||
6 mar | Decision Trees | ||
13 mar | Bagging, Random Forest | ||
20 mar | Gradient boosting |
Date | Topic | Materials | Extra Reading/Practice |
---|---|---|---|
25-30 jan | Basic toolbox | Notebook; Dataset | Python Crash Course |
1-6 feb | EDA and Scikit-learn | Notebook | |
8-13 feb | Calculus recap and Gradient Descent | The Matrix Cookbook | |
15-20 feb | Linear Regression | ||
22-27 feb | Classification | ||
1-6 mar | Texts and Multiclass classification | ||
8-13 mar | Decision Trees | ||
15-20 mar | Ensambles |
We'll be using AnyTask for grading: course link
Date Published | Task | Deadline |
---|---|---|
6 feb | HW 1: Notebook, dataset | 20 feb |
20 feb | HW 2: TBA |
6 mar |
6 mar | HW 3: TBA |
20 mar |
20 mar | HW 4: TBA |
10 apr |
24 apr | HW 5: TBA |
15 may |
29 may | HW 6 (Optional): TBA |
19 jun |
Final grade = 0.7*HW + 0.3*Exam
HW
- Average grade for the assignments 1 to 5. You can get extra points by solving HW 6, but no more than 10 in total.Exam
- Grade for the exam
You can skip the exam if your average grade for the first 5 assignemnts is not smaller than 6 (HW >=6
).
In this case:
Final grade = HW