Important: since github markdown doesn't support LaTeX, view the complete note in the following link instead: https://rawgit.com/oldfatcrab/PMATH336/master/PMATH336_note.html
- Chapter 0: Course Administration (May 02)
- Chapter 1: Groups (May 02)
- 1.1 Definitions and examples (May 02)
- 1.2 Subgroups (May 06)
- 1.3 Finite groups (May 13)
- 1.4 Cyclic groups (May 18)
- Chapter 2: Group homomorphisms (May 30)
- 2.1 Homomorphism and Isomorphism (May 30)
- 2.2 Permutation Groups (Jun 10)
- 2.3 Automorphisms (Jun 22)
- Chapter 3: Lagrange Theorem and Group Actions (Jun 27)
- 3.1 Langrange Theorem and Cosets (Jun 27)
- 3.2 Group Actions (Jul 4)
- 3.3 Stabilizers and orbits of an action (Jul 6)
2016/05/02
- Course structure
- Group Theory Basics
- Examples
- Axioms
- Subgroups and Lagrange's Theorem
- Cyclic groups
- Permutation groups
- Normal subgroups
- quotients
- homomorphisms
- Isomorphism theorems
- automorphism groups and conjugation
- Group Actions
- The orbit-statiliser theorem
- Cauchy's theorem
- Burnside's lemma
- Pòlya enumeration
- the class equation
- Other Topics
- Platonic solids
- classification of finite abelian groups
- cryptography
- application to physics (if time permitting)
- Group Theory Basics
- Grading
- 6 assignments: 30%
- Midterm: 20%
- Final: 50%
- Office
- MC 5427
- Monday 14:00-16:00, Thursday 15:00-17:00, or by appointment
- Let
$G$ be a non-empty set.- Def'n: A binary operation on
$G$ is a map that$G \times G \implies G$ -
$(a,b) \mapsto a\star b$ or$a\cdot b$ or$ab$ (notation)
- A binary operation is often called a product
- Def'n: A binary operation on
- Ex 1)
-
$G=\mathbb{Z}$ and - and
$+: \mathbb{Z}\times \mathbb{Z} \implies \mathbb{Z}$ ,$(m,n) \mapsto m+n$ - or
$\cdot: \mathbb{Z}\times \mathbb{Z} \implies \mathbb{Z}$ ,$(a,b) \mapsto ab$
-
- Ex 2)
$G=\mathbb{R}^3$ - and $ +: \mathbb{R}^3 \times \mathbb{R}^3 \implies \mathbb{R}^3, ((x_1, y_1, z_1), (x_2, y_2, z_2)) \mapsto (x_1+x_2, y_1+y_2, z_1+z_2)$
- and
$\times: \mathbb{R}^3 \times \mathbb{R}^3 \implies \mathbb{R}^3, ((x_1, y_1, z_1), (x_2, y_2, z_2)) \mapsto (x_1, y_1, z_1) \cdot (x_2, y_2, z_2)$ - but
$\dot: \mathbb{R}^3 \times \mathbb{R}^3 \implies \mathbb{R}, ((x_1, y_1, z_1), (x_2, y_2, z_2)) \mapsto (x_1x_2, y_1y_2, z_1z_2)$ is not a binary operation because the target space is not$G=\mathbb{R}^3$
- Def'n (Groups): Let
$G$ be a non-empty set with a binary operation,$G\times G\implies G$ , then$G$ is a group if the binary operation has the following properties:- (i) (Associativity):
$a(bc) = (ab)c$ ,$\forall a,b,c \in G$ - (ii) (Identity):
$\exists e \in G$ such that:$ea = ae =a, \forall a$ in$G$ - (iii) (Inverse):
$\forall a \in G$ ,$\exists a^{-1} \in G$ such that:$aa^{-1} = a^{-1} a = e$
- (i) (Associativity):
- Ex 1)
- The integers: $(\mathbb{Z},+) \leadsto $ this is a group
-
HERE:
$G = \mathbb{Z}$ and$+: \mathbb{Z}\times\mathbb{Z} \implies \mathbb{Z}, (m,n) \mapsto m+n$ - Does
$+$ satisfy properties (i) to (iii)?- (i) Let
$m, n, r \in \mathbb{Z}$ , then:-
$m+(n+r) = (m+n)+r$ ? YES!
-
- (ii) Identity of
$+$ is$0 \in \mathbb{Z}$ - because
$0 + m = m + 0 = m, \forall m \in \mathbb{Z}$
- because
- (iii)
$\forall m \in \mathbb{Z}$ , we have that$m + (-m) = (-m) + m = 0$ -
$\implies -m \in \mathbb{Z}$ is the inverse of$m \in \mathbb{Z}$
- Thus,
$(\mathbb{Z},+)$ is a group.
- (i) Let
- Ex 2)
- The integers:
$(\mathbb{Z},\cdot)\leadsto$ this is a group -
HERE:
$G = \mathbb{Z}$ and$\cdot: \mathbb{Z}\times\mathbb{Z} \implies \mathbb{Z}, (m,n) \mapsto m\cdot n$ - Does
$\cdot$ satisfy properties (i) to (iii)?- (i) Let
$m, n, r \in \mathbb{Z}$ , then:-
$m\cdot(n\cdot r) = (m\cdot n)\cdot r$ ? YES!
-
- (ii) Identity of
$\cdot$ is$1 \in \mathbb{Z}$ - because
$1 \cdot m = m \cdot 1 = m$ ,$\forall m \in \mathbb{Z}$
- because
- (iii)
$\forall m \in \mathbb{Z}$ , the inverse of m with respect to multiplication is$\frac{1}{m}$ (if$m \neq 0$ ), but$\frac{1}{m} \notin \mathbb{Z}$ if$m\neq\pm1$ . So property (iii) fails! - Thus,
$(\mathbb{Z},\cdot)$ is not a group.
- (i) Let
- The integers:
- Ex 3)
-
$G = {1, -1}$ set of 2 elements with the binary operation given by:
-
- (continue)
- Note that
$\cdot$ is just the usual product in$\mathbb{R}$ restricted to element in$G$ . Then$G$ is a group because:- (i)
$\cdot$ is associative because multiplication in$\mathbb{R}$ is associative - (ii)
$1$ is the identity. - (iii) From the table, we see that
$1$ is the inverse of$1$ and$-1$ is the inverse of$-1\leadsto$ every element in$G$ has an inverse.
- (i)
- Note that
- Ex 4)
-
$(\mathbb{Q}, +)$ is a group (exercise)
-
- Ex 5)
- $ (\mathbb{Q}^, \cdot)$ is a group where $\mathbb{Q}^ = \mathbb{Q}\setminus{0}$
- Indeed:
- (i) Multiplication in
$\mathbb{Q}^*$ is associative as in$\mathbb{Z}$ and$\mathbb{R}$ - (ii)
$1 \in \mathbb{Q}^*$ is the identity with respect to \dot. - (iii) $\forall \frac{a}{b} \in \mathbb{Q}^$, we have that $\frac{b}{a} \in \mathbb{Q}^$ and
$\frac{a}{b} \cdot \frac{b}{a} = \frac{b}{a}\cdot \frac{a}{b} = 1 \implies \frac{a}{b}^{-1} = \frac{b}{a} \implies$ every element in$\mathbb{Q}^*$ has an inverse
- (i) Multiplication in
- Note:
-
$(\mathbb{Q}, \cdot)$ is not a group because even though (i) and (ii) hold, property (iii) fails for$0 \in \mathbb{Q}$
-
- Ex 6)
-
$(\mathbb{R}, +)$ and$(\mathbb{C}, +)$ are groups
-
- Ex 7)
- $(\mathbb{R}^, \cdot)$ and $(\mathbb{C}^, \cdot)$ are groups (where
$\mathbb{R}^* = \mathbb{R}\setminus{0}$ and$\mathbb{C}^* = \mathbb{C}\setminus{0})$
- $(\mathbb{R}^, \cdot)$ and $(\mathbb{C}^, \cdot)$ are groups (where
- Ex 8)
-
$({1, i, -1, -1}, \cdot)$ is a group, where$i \in \mathbb{C}$ such that$i^2 = -1$ . Here:
-
$ 1 $ | $ i$ | |||
$ i $ | $ -1$ | |||
$ -1 $ | $ -i$ | |||
$ -i $ | $ 1 $ |
2016/05/04
- Review from last lecture:
- Def'n (Groups): Let
$G$ be a non-empty set with a binary operation,$G\times G\implies G$ , then$G$ is a group if the binary operation has the following properties:- (i) (Associativity):
$a(bc) = (ab)c$ ,$\forall a,b,c \in G$ - (ii) (Identity):
$\exists e \in G$ such that:$ea = ae =a, \forall a$ in$G$ - (iii) (Inverse):
$\forall a \in G$ ,$\exists a^{-1} \in G$ such that:$aa^{-1} = a^{-1} a = e$
- (i) (Associativity):
- Def'n (Groups): Let
- Note: Properties (i)-(iii) in the def'n are called the group axioms
- Ex 9) Integer module n:
$\mathbb{Z}_n$ - In
$\mathbb{Z}_n$ , two integer$r$ and$s$ are equivalent if$r = s+an$ , for same$a$ in$\mathbb{Z}$ , this is written as$r \equiv s$ (mod$n$ ) - e.g.:
$\mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}$ $\overline{0} \equiv {0, 3, -3, 6, \cdots} \equiv \overline{3}$ $\overline{1} \equiv {1, 4, -2, 7, \cdots} \equiv \overline{4}$ $\overline{2} \equiv {2, 5, -1, 8, \cdots} \equiv \overline{5}$
-
$\forall F, F' \in \mathbb{Z}_n$ , we set:-
$\overline{r} + \overline{r_1} = \overline{r+r_1}$ , and $\overline{r} \cdot \overline{r_1} = \overline{r \cdot r1}$
-
-
$(\mathbb{Z}_n, +)$ : since$+$ is associative in$\mathbb{Z}$ , it is also associative with$\mathbb{Z}_n$ . Moreover,$\overline{0}$ is the identity for$+$ . finally,$\overline{-r}$ is inverse of$F$ with respect to$+$ . We will denote$\overline{-r}$ by$-\overline{r} \implies (\mathbb{Z}_n, +)$ is a group -
$(\mathbb{Z}_n, \cdot)$ : Again, since$\cdot$ is associative in$\mathbb{Z}$ , it is also associative in$\mathbb{Z}$ ,. And$\overline{1}$ is the identity for$\cdot$ , however, not every element in$\mathbb{Z}_n$ has an inverse with respect to$\cdot$ . In fact, recall that$F \in \mathbb{Z}_n$ has a multiplicative inverse iff$gcd(r,n) = 1$ . I.e.$\exists \overline s \in \mathbb{Z}_n$ such that$\overline r \cdot \overline s = \overline s \cdot \overline r = \overline 1$ iff$gcd(r, n) = 1$ - If an element
$\overline r \in \mathbb{Z}_n$ has an inverse in$\mathbb{Z}_n$ , it is called a unit. - Set
$\mathbb{Z}_n^* = {\text{units in }\mathbb{Z}_n} = {F\in \mathbb{Z}_n \mid gcd(r,n)=1}$ . Then,$(\mathbb{Z}_n^*, \cdot)$ is a group- E.g.
$\mathbb{Z}_6 = {\overline 1, \overline 2, \overline 3, \overline 4, \overline 5, \overline 6}$ and$\mathbb{Z}_6^* = {\overline 1, \overline 5}$
- E.g.
- The Cayley table for
$(\mathbb{Z}_6, \cdot)$ is:
- In
- Def'n: Let
$(G, \cdot)$ be a group, the order of the group$G$ is denoted$\mid G \mid$ , is the number of element in the group- Remark: If the binary operation is clear, we write
$G$ instead of$(G, \cdot)$ - E.g.:
$(\mathbb{Z}, +) \implies \mid\mathbb{Z}\mid = \infty$ $(\mathbb{Z}_6,+) \implies \mid\mathbb{Z}_6\mid = 6$ - $(\mathbb{Z}_6^,\cdot) \implies \mid\mathbb{Z}_6^ \mid = 2$
- Remark: If the binary operation is clear, we write
- Aside: There is another important set of objets in abstract algebra, which corresponds to rings (with identity):
- Def'n: A ring (with identity) is a non-empty set
$G$ together with two binary operations$+$ ,$\cdot$ , such that:-
-
$(G,+)$ is a group (i.e.$+$ satisfies properties (i)-(iii)
-
-
-
$(G,\cdot)$ is such that$\cdot$ satisfies (i) and (iii)
-
-
-
$+$ and$\cdot$ satisfy the distributive lays:$(a+b)\cdot c = a\cdot c+b\cdot c, \forall a,b,c \in G$
-
-
- E.g.
$(\mathbb{Z}, +, \cdot)$ ,$(\mathbb{R}, +, \cdot)$ ,$(\mathbb{C}, +, \cdot)$ ,$(\mathbb{Q}, +, \cdot)$ ,$(\mathbb{Z}_6, +, \cdot)$ etc. - In a ring, the elements that have inverses with respect to multiplication are called units
- Def'n: A ring (with identity) is a non-empty set
- Def'n: A group
$(G, \cdot)$ is called abelian if the binary operation is commutative:$a \cdot b = b \cdot a, \forall a,b \in G$ - E.g.
$(\mathbb{Z}, +)$ ,$(\mathbb{R}, +)$ ,$(\mathbb{C}, +)$ ,$(\mathbb{Q}, +)$ ,$(\mathbb{Z}_6, +)$ etc. - However, not every group is abelian!
- E.g. Consider
$G = GL(n, \mathbb{R}) = {A\in M_{n\times n}(\mathbb{R}) \mid A\text{ is invertible}} = {A\in M_{n\times n}(\mathbb{R}) | \det A \neq 0} $
- E.g. Consider
- Note that
$\exists$ natural operations on$n\times n$ matrices: addition and multiplication. Let$A, B \in M_{n\times n}(\mathbb{R})$ . Then:$A+B,, A\cdot B \in M_{n\times n}(\mathbb{R})$ -
$\implies +$ ,$\cdot$ are binary operations for$M_{n\times n}(\mathbb{R})$ - However, if
$A, B \in G$ , although$A\cdot B \in G$ , may not have$A+B \in G$ (e.g.$a\in G$ so that$0\in G$ , but$A+(-A)=0 \notin G$ )$\implies$ $+$ is not a binary operation with for$G$ - Consider
$(G, \cdot)$ . Then it is a group (exercise) where the identity is the nxn identity matrix$I_{n\times n}$ . But,$(G, \cdot)$ is not abelian because$AB \neq BA$ for most$A,B \in G$
- A group
$(G, \cdot)$ is called non-abelian if it is not abelian.
- E.g.
-
Some basic properties:
-
- The identity element
$e$ in a group$(G, \cdot)$ is unique
- The identity element
-
- The inverse of an element in a group
$(G, \cdot)$ is unique
- The inverse of an element in a group
-
2016/05/06
- Review:
- Def'n (Groups): Let
$G$ be a non-empty set with a binary operation,$G\times G\implies G$ , then$G$ is a group if the binary operation has the following properties:- (i) (Associativity):
$a(bc) = (ab)c$ ,$\forall a,b,c \in G$ - (ii) (Identity):
$\exists e \in G$ such that:$ea = ae =a, \forall a$ in$G$ - (iii) (Inverse):
$\forall a \in G$ ,$\exists a^{-1} \in G$ such that:$aa^{-1} = a^{-1} a = e$
- (i) (Associativity):
-
Some basic properties:
-
- (Uniqueness of identity) The identity element
$e$ in a group$(G, \cdot)$ is unique
- (Uniqueness of identity) The identity element
-
- (Uniqueness of inverses) The inverse of an element in a group
$(G, \cdot)$ is unique
- (Uniqueness of inverses) The inverse of an element in a group
-
- Def'n (Groups): Let
- Proof of above identities:
-
- (Uniqueness of identity)
- Suppose
$\exists e, f \in G$ such that$ae = ea = a$ and$af = fa = a, \forall a \in G$ . - In particular, since
$f\in G$ , we have that$f = fe$ because$e$ is an identity - Similarly, because
$e\in G$ and$f$ is an identity,$fe = e$ $\implies f=fe=e$
-
- (Uniqueness of inverses)
- Let
$a\in G$ . Suppose that a has two inverses in$G$ , say$a^{-1}$ and$b$ . Therefore, by property (iii), we have:$aa^{-1} = a^{-1} a = e$ and$ab = ba = e$ - Then
$a^{-1} = a^{-1}e = a^{-1}(ab) = (a^{-1}a)b = eb = b$ $\implies a^{-1}=b$
-
- Using these properties, we obtain:
-
$e{-1}=e$
-
$(ab)^{-1}=b^{-1}a^{-1},\forall a,b \in G$
-
$(a^{-1})^{-1}=a,\forall a \in G$
-
$(a_1a_2\cdots a_n)^{-1} = a_n^{-1}\cdots a_2^{-1}a_1^{-1}$
-
- (Cancellation Property) Let
$a,b,c\in G$ with$G$ a group. If ab = ac, then b=c. If ba=ca, then b = c.
- (Cancellation Property) Let
-
- Proof:
-
- By uniqueness of the inverse, it is enough to check that
$ee = ee = e$ to proof that$e^{-1}=e$ . But this is true by property (ii).
-
- By uniqueness of the inverse, it is enough to check that
$ab(b^{-1}a^{-1}) = (b^{-1}a^{-1})ab = e$ - By associatitivy, we have that
$ab(b^{-1}a^{-1} = a(bb^{-1})a^{-1} = aea^{-1} = (ae)a^{-1} = aa^{-1} = e$ - Similarly,
$(b^{-1}a^{-1})ab=b^{-1}(a^{-1}a)b=b^{-1}eb=(b^{-1}e)b=b^{-1}b=e$ $\implies (ab)^{-1}=b^{-1}a^{-1}$ - Note:
-
$GL(n,\mathbb{R})=$ all general linear group - One would be tempted to think that
$(ab)^{-1}=a^{-1}b^{-1}$ but this is false in general. - Example:
$(G,\cdot) = (GL(2,\mathbb{R}),\cdot)$ - A = $\begin{pmatrix}1&2\0&1\end{pmatrix}$ and B = $\begin{pmatrix}2&0\0&3\end{pmatrix}$
- $\implies AB = \begin{pmatrix}2&6\0&3\end{pmatrix}$ and $(AB)^{-1}=\begin{pmatrix}\frac{1}{2}&-1\ 0&\frac{1}{3} \end{pmatrix}$
- But, $A^{-1}B^{-1} = \begin{pmatrix}\frac 1 2&-\frac 2 3\0&\frac 1 3\end{pmatrix} \neq (AB)^{-1}$
- Nonetheless, $B^{-1}A^{-1} = \begin{pmatrix}\frac{1}{2}&-1\ 0&\frac{1}{3} \end{pmatrix} = (AB)^{-1}$
- In fact, one can show that:
$(ab)^{-1}=a^{-1}b^{-1},\forall a,b,\in G \Leftrightarrow G$ is abelian (Exercise).
-
-
- and 6)
- Exercise in assignment 1
-
- Suppose that
$ab = ac$ . Then, since$G$ is a group,$\exists a^{-1}\in G$ such that$aa^{-1}=a^{-1}a=e$ - Therefore
$a^{-1}(ab)=(a^{-1}a)b=eb=b$ - Similarly,
$a^{-1}(ac)=c$ . - But,
$ab=ac$ , so that$a^{-1}(ab)=a^{-1}(ac)=c$ - The proof of 2nd cancellation property is similar
-
- Def'n: Let
$G$ e a group. If a subset$H$ of$G$ is itself a group under the operation of$G$ , we say that H is a subgroup of$G$ . - Note: the definition of a subgroup implies that subset it is closed under the operation in G. I.e.
$\forall a,b\in H$ , then$ab\in H$ . This ensures that restriction of the binary operation$G\times G\implies G$ is again a binary operation taking$H\times H\implies H$ . However, a subset of a group of$G$ may not be closed under the operation on$G$ .- E.g.
$(M_{n\times n}(\mathbb{R}), +)$ is a group and$GL(n,\mathbb R)={A\in M_{n\times n}(\mathbb R) \mid \det A\ne 0} \subset M_{nxn}(\mathbb R)$ , but$GL(n, \mathbb R)$ is not closed under$+$ (e.g. $\forall A \in GL(n,\mathbb R), -A \in GL(n,\mathbb R)$) but$A+(-A) \notin GL(n,\mathbb R)$
- E.g.
- We use the notation
$H \vartriangleleft G$ (or$H<G$ ) to mean that H is a subgroup of$G$ . (some authors use$H\trianglelefteq G$ and$H\vartriangleleft G$ indicates that$H \leq G$ ). If$H \leq G$ , then H is called a proper subgroup of G. The singleton${e}$ is a subgroup of$G$ called the trivial subgroup; a subgroup of$G$ that is not${e}$ is called a non-trivial subtroup of G. - How does one determine whether or not a subset
$H$ of$G$ is a subgroup? There are 2 tests:- Theorem (One-step subgroup test): Let
$H$ be a non-empty subset of a group$G$ . If$ab^{-1}\in H,\forall a,b\in H$ , then$H\vartriangleleft G$ .
- Theorem (One-step subgroup test): Let
2016/05/09
-
Review from previous lectures:
-
$(G,\cdot)$ is a group if:- operation is associative
- (Identity):
$\exists e\in G$ such that$ae = ea = a, \forall a\in G$ - (Inverses):
$\forall a \in G, \exists a^{-1} \in G$ such that$aa^{-1}=a^{-1}a=e$ .
- Subgroup: let
$0\neq H\subset G$ such that$H$ itself is a group under the same operation as G - Note: It is implicit in the definition that
$H$ is closed under the operation of$G$ (i.e.,$\forall a,b \in H$ , then$ab\in H$ ). - Theorem (One-step subgroup test): Let
$G$ be a group and$H$ be a non-empty subset of$G$ . Then,$H$ is a subgroup of$G$ if$[ab^{-1}\in H,\forall a,b\in H]\quad(*)$
-
-
Proof of one-step subgroup test:
- We first need to check that H is closed under the operation in G. Given then property that $ab^{-1} \in H, \forall a,b\in H $ if we can prove that,
$\forall a,b \in H, b^{-1}\in H$ , then$ab=a(b^{-1})_{-1}\in H$ . - We first notice that
$e\in H$ , because$H$ has at least one element, say a, so that$e=aa^{-1}\in H$ (by $(*)$). - Also,
$e^{-1} = e$ . Thus,$\forall a \in H$ , we have that$a^{-1} = ea^{-1}\in H$ (by $(*)$). - Finally,
$\forall a,b\in H$ , since$b^{-1}\in H$ , we get that$ab=a(b^{-1})^{-1}\in H$ by$(*)$ -
$\implies H$ is closed under the operation - Note: we still to check that the restriction of the operation on
$G$ satisfies the 3 group axioms. Since the operation is associative on$G$ , it is also associative on$H$ . And we have already seen that the identity and inverse axioms hold.
- We first need to check that H is closed under the operation in G. Given then property that $ab^{-1} \in H, \forall a,b\in H $ if we can prove that,
-
Theorem (Two-step subgroup test) Let
$G$ be a group and$H$ be a non-empty subset of$G$ . Then$H$ is a subgroup of$G$ if$ab\in H \forall a,b\in H$ (H is closed under the operation on G), and$a^{-1} \in H, \forall a \in H$ (H is closed under inverse).- Proof: Let
$a,b\in H$ . Then$b^{-1} \in H$ so that$ab^{-1} \in H$ . Thus, by one-step subgroup test, H is a subgroup.- Remark: The two-step subgroup test is useful if one already knows that the subset
$H$ of$G$ is clsed under the operation or clsed under inverses, so that there then is only one thing left to check.
- Remark: The two-step subgroup test is useful if one already knows that the subset
- Ex 1)
- $(\mathbb C, +) \leadsto (\mathbb Z^, +) \vartriangleleft (\mathbb Q^,+)\vartriangleleft (\mathbb R^,+)\vartriangleleft (\mathbb C^,+)$
- $(\mathbb C, \cdot) \leadsto (\mathbb Q^,\cdot)\vartriangleleft (\mathbb R^,\cdot)\vartriangleleft (\mathbb C^*,\cdot)$
- Note:
$^*$ means without zero
- Ex 2)
-
$({1,-1}, \cdot)$ group with$\cdot$ the usual multiplication in$\mathbb C$ - $({1,-1}, \cdot)\vartriangleleft(\mathbb Q^, \cdot)\vartriangleleft(\mathbb R^, \cdot)\vartriangleleft(\mathbb C^*, \cdot)$
-
- Ex 3)
$(\mathbb Z, +)$ - $H={2m\mid m\in \mathbb Z} \implies $ H is closed under
$+$ since the sum of 2 even integers is even - Also,
$\forall 2m \in H$ , its inverse -$2m\in H \implies H$ is closed under inverse. Thus,$H \vartriangleleft (\mathbb Z,+)$ by the two-step subgroup test
- Ex 4)
$(\mathbb Z_6,+) ={\overline 0, \overline 1, \overline 2, \overline 3, \overline 4, \overline 5}$ - Then,
$H = {\overline 0, \overline 2, \overline 4} \vartriangleleft \mathbb Z_6$ - $(Z_6^, \cdot) = {\overline 1, \overline 5} \leadsto $ the only proper subgroup of $Z_6^$ is the trivial subgroup
$H={\overline 1}$ $(Z_{12}^*, \cdot) ={\overline 1,\overline 5,\overline 7,\overline{11}}$
$\cdot$ $\overline 1$ $\overline 5$ $\overline 7$ $\overline {11}$ $\overline 1$ $\overline 1$ $\overline 5$ $\overline 7$ $\overline{11} $ $\overline 5$ $\overline 5$ $\overline 1$ $\overline{11}$ $\overline 7$ $\overline 7$ $\overline 7$ $\overline{11}$ $\overline 1$ $\overline 5$ $\overline{11}$ $\overline{11}$ $\overline 7$ $\overline 5$ $\overline 1$ - Proof: Let
-
-
- Every element is inverse itself
-
$({\overline 1, \overline5},\cdot), ({\overline 1,\overline 7 },\cdot), ({\overline 1, \overline{11} },\cdot), ({\overline1 },\cdot)\leftarrow$ These are the only proper subgroups of$(\mathbb Z_{12}^*, \cdot)$
- Note: We have seen in the proof of the one-step subgroup test that if
$H\vartriangleleft G$ , then$e \in H$ where$e$ is the identity in$G$ . However, since$H$ is closed under the operation on$G, \forall a\in H, ae = ea = a$ (since$e$ is the identity in$G$ )$\implies e$ is an identity element in$H$ for the operation in$H$ . So, because identity element are unique,$e$ is also the identity in$H$ .
-
-
Prop: Let
$G$ be a group and$a\in G$ . Set$\langle a\rangle:={a^m = aa\cdots a \mid m\in \mathbb Z}$ Then$\langle a\rangle \vartriangleleft G$ called the cyclic subgroup of$G$ generated by$a$ - Proof:
- Let
$a^m, a^{m'}\in \langle a\rangle$ . - Then
$(a^m)^{-1} = a^{-m}\in <a\rangle$ , since$-m' \in \mathbb Z$ . - Therefore
$a^m (a^{m'})^{-1} = a^m a^{-m'} = a^{m-m'} \in \langle a\rangle$ since$m'\in Z$ . - So, by the 1-step subgroup test,
$\langle a\rangle \vartriangleleft G$
- Let
- Ex 1)
-
$(\mathbb Z,+) \leadsto H={2m \mid m\in \mathbb Z}=\langle 2\rangle$ since, using additive notation,$\langle 2\rangle = {2+2+\cdots +2\mid m\in \mathbb Z}$
-
- Ex 2)
$(\mathbb Z_{12}^*, \cdot) = {\overline 1,\overline 5,\overline 7,\overline{11}}$ -
${1,5}$ =$\langle\overline 5\rangle$ because$\langle\overline 5\rangle = \langle1, \overline 5, \overline 5^2, \overline 5^3, \cdots\rangle$ ${\overline 1, \overline 7}$ ${\overline 1, \overline{11}}$
- Proof:
2016/05/11
-
Clarification from last lecture:
- Let
$G$ be a group, and$a\in G$ . We defined:$\langle a\rangle:={a^m\mid m\in \mathbb Z}$ when$a^0:=e$ and$a^{-n} = a_{-1}\cdot a_{-1}\cdot \cdots a_{-1}$ if$n\in \mathbb N$ . - This means
$a^{n}a^{-n}$ $= (a_{1}\cdot a_{1}\cdot \cdots a_{1})( a_{-1}\cdot a_{-1}\cdot \cdots a_{-1}) $ $= (a_{1}\cdot a_{1}\cdot \cdots a_{1})(a_{1}\cdot a_{-1})( a_{-1}\cdot a_{-1}\cdot \cdots a_{-1}) $ $= (a_{1}\cdot a_{1}\cdot \cdots a_{1})e( a_{-1}\cdot a_{-1}\cdot \cdots a_{-1}) $$= \cdots = e$ . Similarly,$a^{-n}a^{n} =e$ . So, by uniqueness of inverses,$a^{-n} = (a^{-1})^n$ . Also note that$\langle a\rangle = \langle a^{-1}\rangle$ because,$\forall m \in \mathbb Z, \langle a\rangle \ni a^m=(a^{-1})^m \in \langle a^{-n}\rangle$ . We have that prop:$\langle a\rangle \vartriangleleft G$
- Let
-
Important:
- Let
$G$ be a group and$H\vartriangleleft G$ . By definition, this means that$H$ is a group in its own right so that:-
$H$ has an indentity element,$e_H\in H$ -
$\forall a\in H$ , then it has an inverse in$H$ , say$a_H^{-1}\in H$ , such that$aa_H^{-1}=a_H^{-1}a=e_H$ - Then,
$e_H=e=$ (indentity in$G$ ) because,$\forall a\in H, since a\in G$ as$H\subset G$ , we have$ae=ea=a$ . - So,
$e$ is an indentity in$H$ , implying that$e=e^H$ by uniqueness of the indentity element. - Similarly, if
$a^{-1}$ as the identity of$a\in G$ , then$aa^{-1}=a^{-1}a=e=e_H$ -
$\implies a^{-1}$ is an indentity for$a\in H\implies a^{-1}=a_H^{-1}$ by uniqueness of inverse
-
-
So: if
$H\vartriangleleft G$ , then the indentity of$H$ is the indentity of G and the inverse of any element in$H$ is its inverse in$G$ .
- Let
-
Given a subset
$H\subset G$ , how can we tell if$H$ is$NOT$ a subgroup of$G$ ?- If
$e\notin H$ , then$H \not \vartriangleleft G$ - If
$H$ is not closed under the operation on$G$ , then$H \not \vartriangleleft G$ - E.g.
$(G,\cdot) = (\mathbb R^*, \cdot)$ and$H = {x\in(G, \cdot) \mid x=q or x \mathbb Q}$ . Note that$1\in H$ , so that$H$ may be a subgroup of$G$ . BUT,$\sqrt{2}\in H$ and$\sqrt{2}\sqrt{2} \notin H$ -
$\implies H$ is not closed under multiplication $\implies H \not \vartriangleleft G$
-
- E.g.
-
$H$ is not closed under inverses, the$H \not \vartriangleleft G$ (i.e. If$\exists a \in G$ with$a^{-1} \notin H$ , then$H \not \vartriangleleft G$ )- E.g.
$(G,\cdot) = (\mathbb R^*,\cdot)$ and$H = {x\in (G,\cdot) \mid x\ge 1}$ . Note that$1\in H$ . Also,$\forall x,y\in H, xy\in H$ because$xy \ge 1$ since$x,y\ge 1$ . But,$2\in H$ and$2^{-1} = \frac{1}{2}\notin H$ .-
$\implies H$ is not closed under inverses $\implies H\not \vartriangleleft G$
-
- E.g.
- If
-
Also not every of element in a group commute, some element commute with every element in a group. For example, if
$G$ is a group, then$e$ Â commutes with every element in$G$ because$ae=ea, \forall a \in G$ -
Definition (Centre of a group): Let
$G$ be a group, we define$\mathcal Z(G):={a\in G\mid ax=xa, \forall x \in G}$ = (element in$G$ that commute with all elements in$G$ ) = centre of G- Note:
-
-
$\mathcal Z$ is for zentrum = (centre in German)
-
-
$e\in \mathcal Z(G)$
-
- If
$G$ is abelian, then$\mathcal Z(G) = G$ . In fact, we have ($G$ is abelian)$\Leftrightarrow$ ($\mathcal Z(G) = G$ )
- If
-
- Ex: Consider
$\mathcal G=GL(2,\mathbb R) = {A\in M_{2\times 2}(\mathbb R)\mid \det A \neq 0}$ under matrix multiplication. Let us show that $\mathcal Z(G) = \bigg {\left.\begin{pmatrix}a&0\0&a\end{pmatrix}\right\vert a\in R^*\bigg}\subset \mathcal Z(G)$. Note that$\mathcal Z(G)\neq G$ , which is to be expected since$G$ is not abelian! - Proof:
- $\mathcal Z(G)\subset \bigg {\left.\begin{pmatrix}a&0\0&a\end{pmatrix}\right\vert a\in R^*\bigg}\subset \mathcal Z(G)$
- Let $\begin{pmatrix}a&b\c&d\end{pmatrix}\in \mathcal Z(G)$ so that $\begin{pmatrix}a&b\c&d\end{pmatrix}$ commutes with every matrix in
$GL(2,\mathbb R)$ - In particular:
- $\begin{pmatrix}a&b\c&d\end{pmatrix}\begin{pmatrix}1&0\0&2\end{pmatrix}=\begin{pmatrix}1&0\0&2\end{pmatrix}\begin{pmatrix}a&b\c&d\end{pmatrix}$
- $\Leftrightarrow \begin{pmatrix}a&2b\c&2d\end{pmatrix}=\begin{pmatrix}a&b\2c&2d\end{pmatrix}$
-
$\implies c = 2c$ and$2b = b$ $\implies c=b=0$ -
$\implies (a,0;0,b)$ (i.e. must be diagonal)
- $\begin{pmatrix}a&0\0&d\end{pmatrix}\begin{pmatrix}1&1\0&1\end{pmatrix}=\begin{pmatrix}1&1\0&1\end{pmatrix}\begin{pmatrix}a&0\0&d\end{pmatrix}$
- $ \Leftrightarrow \begin{pmatrix}a&a\0&d\end{pmatrix}=\begin{pmatrix}a&d\0&d\end{pmatrix}(a,a;0,d)=(a,d;0,d)$
$\implies a=d$
- So $\mathcal Z(G) = {\begin{pmatrix}a&0\0&a\end{pmatrix}\mid a\in R^*}$, where
$a \neq 0$ because $\det \begin{pmatrix}a&0\0&a\end{pmatrix} = a^2 \neq 0$
- $\begin{pmatrix}a&b\c&d\end{pmatrix}\begin{pmatrix}1&0\0&2\end{pmatrix}=\begin{pmatrix}1&0\0&2\end{pmatrix}\begin{pmatrix}a&b\c&d\end{pmatrix}$
- $\bigg {\left.\begin{pmatrix}a&0\0&a\end{pmatrix}\right\vert a\in R^*\bigg}\subset \mathcal Z(G)$:
- Proof:
- Consider $\begin{pmatrix}a&0\0&a\end{pmatrix}$ with
$a \in \mathbb R^*$ . - Then, $\forall \begin{pmatrix}x&y\z&w\end{pmatrix}\in GL(2,\mathbb R)$, we have: $\begin{pmatrix}a&0\0&a\end{pmatrix}\begin{pmatrix}x&y\z&w\end{pmatrix}=\begin{pmatrix}ax&ay\az&aw\end{pmatrix} = \begin{pmatrix}a&0\0&a\end{pmatrix}$
- $ \implies \begin{pmatrix}a&0\0&a\end{pmatrix}\in \mathcal Z(G)$
- and $\bigg {\left.\begin{pmatrix}a&0\0&a\end{pmatrix}\right\vert a\in R^*\bigg}\subset \mathcal Z(G)$
- Consider $\begin{pmatrix}a&0\0&a\end{pmatrix}$ with
- Proof:
- Note:
-
Theorem (center is a subgroup): Let
$G$ be a group.Then$\mathcal Z(G) \vartriangleleft G$ .- Proof:
- Let us use 2-step subgroup test.
- We need to verify that
$\mathcal Z(G)$ is a) closed under the operation, and b) also closed under inverses.- a) Let
$a,b\in \mathcal Z(G)$ . Then$ax=xa$ and$bx=xb, \forall x\in G$ . Do we have$(ab)x = x(ab), \forall x \in G$ ?- Let
$x\in G$ . Then,$(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)$ $\implies ab\in \mathcal Z(G)$
- Let
- b) Let
$x\in \mathcal Z(G)$ so that$ax = xa, \forall x\in G$ . Then$a^{-1}x = (x^{-1}a)^{-1} = (ax^{-1})^{-1} = (x^{-1})^{-1}a^{-1} = xa^{-1} \implies a^{-1}\in \mathcal Z(G)$
- a) Let
- Proof:
2016/05/13
-
Review of last lecture:
- Def: Let G be a group. Then
$$\mathcal Z(G) = {a\in G\mid ax=xa,\forall x\in G} = center of G$$ - Note:
$G$ is abelian iff$\mathcal Z(G)=G$
- Note:
- Def: Let G be a group. Then
-
Theorem:
$\mathcal Z(G)$ is a subgroup of$G$ -
Definition (Centraliser of an element
$a$ in$G$ ): Let$G$ be a group and$a \in G$ . Then:$$\mathcal C(a):= {g\in G\mid ag=ga}\={\text{set of all element in }G\text{ that commute with }a}\={\text{centraliser of }a\text{ in }G}$$ -
E.g.
-
-
$\mathcal C(e) = G$ since,$\forall a\in G, eg=ge$
-
-
- If
$a\in \mathcal Z(G)$ , then$C(a)=G$ . Moreover, if$a\in G$ is such that$\mathcal C(a)=G$ , we must have that$a\in \mathcal Z(G)$ , by definition of$\mathcal Z(G)$ So:$(a\in \mathcal Z(G))\Leftrightarrow(\mathcal C(a)=G)$
- If
-
-
$G=GL(2, \mathbb R)$ . Then, $\mathcal Z(G) = \bigg {\left.\begin{pmatrix}a&0\0&a\end{pmatrix}\right.\mid a\in \mathbb R^* \bigg }$
- Consider $A=\begin{pmatrix}a&0\0&b\end{pmatrix}$ with
$a\neq b$ and$a,b\neq 0$ (so that $\begin{pmatrix}a&0\0&b\end{pmatrix}\in G$) - Let us compute
$\mathcal C(A)$ . Note that since$A\notin \mathcal Z(G)$ , we must have that$\mathcal C(A) \subsetneqq G$ . - By definition, $\mathcal C(A)=\bigg {\left.\begin{pmatrix}x&y\z&w\end{pmatrix}\right.\in GL(2,\mathbb R)\mid A\begin{pmatrix}x&y\z&w\end{pmatrix}=\begin{pmatrix}x&y\z&w\end{pmatrix}A\bigg }$
-
BUT, $\begin{pmatrix}a&0\0&b\end{pmatrix}\begin{pmatrix}x&y\z&w\end{pmatrix}=\begin{pmatrix}x&y\z&w\end{pmatrix}\begin{pmatrix}a&0\0&b\end{pmatrix} \Leftrightarrow \begin{pmatrix}ax&ay\bz&bw\end{pmatrix}\Leftrightarrow ay=by$ and
$bz=az \Leftrightarrow (a-b)y=0$ and$(a-b)z=0 \Leftrightarrow y=z=0$ - So: $\mathcal C(A)=\bigg {\left.\begin{pmatrix}x&0\0&w\end{pmatrix}\right.\mid x,w\in \mathbb R^* \bigg }\subset GL(2,\mathbb R)$
-
-
-
Theorem: Let
$G$ be a group and$a\in G$ . Then,$\mathcal C(a)$ is a subgroup.- Proof: exercise
-
Remark
-
$\forall a\in G, \mathcal C(a)=\mathcal C(a^{-1})$
-
$\mathcal Z(G) = \bigcap\limits_{a\in G} \mathcal C(a)$
- Proof for exercise
-
- Definition: A group
$G$ is called finite if$|G|<\infty$ (i.e.$G$ has a finite number of elements) - E.g.:
-
$(\mathbb Z_n, +) \leadsto |G|=n<\infty$
-
- $(\mathbb Z_n^, \cdot) \leadsto |\mathbb Z_n^|<|\mathbb Z_n|=n<\infty$
-
- Permutations of degree
$n$
- Permutations of degree
$n$ is a bijection from${1,\cdots, n}$ to itself, i.e. it is a map$$\sigma :{1,\cdots,n}\implies{1,\cdots,n}$$ that is 1:1 and onto. The set of all permutation of degree n is denoted$S_n$ -
$S_n$ is group under the operation of composition$$S_n\times S_n \implies S_n\(\sigma, \tau)\mapsto\sigma\circ \tau$$ (which is well-defined because$\sigma,\tau:{1,\cdots,n}\implies{1,\cdots,n}$ so that$\sigma\circ \tau$ is well-defined. and$\sigma\circ\tau$ is a bijection since$\sigma,\tau$ are both bijection) Also composition of function is associative, the identity permutation$id:{1,\cdots,n}\implies{1,\cdots,n}, i\mapsto i$ , is an identity for the operation of composition$\forall \tau\in S_n$ , its inverse map$\tau^{-1}\in S_n$ and is an inverse for$\tau$ with respect to the operation of composition. So,$(S_n,\circ)$ is a group- Claim:
$S_n$ has$n!$ elements- Proof: to determine
$\sigma$ , we just have to specify the values$\sigma_1, \cdots, \sigma_n$ which are distinct element of${1,\cdots,n}$ since$\sigma$ is 1:1-
$\sigma(1)$ can take$n$ possible values since$\sigma(1)\in {1,\cdots,n}$ -
$\sigma(2)$ can take$n-1$ possible values once$\sigma(1)$ is fixed because$\sigma(2)\in {1,\cdots,n} \setminus {\sigma(1)}$ -
$\sigma(3)$ can take$n-2$ possible values once$\sigma(1)$ and$\sigma(2)$ is fixed because$\sigma(3)\in {1,\cdots,n} \setminus {\sigma(1),\sigma(2)}$ - etc$\cdots$
-
$\sigma(n)$ can only take one possible value once$\sigma(1),\cdots,\sigma(n-1)$ are fixed - Thus, there are
$n(n-1)\cdots 1=n!$ possible ways of defining \sigma
-
- Proof: to determine
- Claim:
- So:
$(S_n,\circ)$ is a finite group with$|S_n| = n!$ , we often just write$S_n$ and call it the symmetric group of degree n.
- Permutations of degree
-
- For a finite group
$G$ , checking that a subset$H\subset G$ is a subgroup is very simple - Theorem (Finite subgroup test): Let
$G$ be a finite group and let$\phi\ne H\subset G$ . Then$$(H\text{ is a subgroup of }G)\Leftrightarrow(ab\in H, \forall a,b\in H)$$ - Proof:
- If
$H$ is a subgroup of$G$ , then it is closed under the operation in$G$ (by definition), so the property holds so that$ab\in H, \forall a,b\in H$ . Since$H$ is closed under the operation in$G$ , by the 2-step subgroup test, the only thing left is that$H$ is closed under inverse:$\forall a\in H, a^{-1}\in H$ . - Let
$a\in H$ . If$a=e$ , then$a^{-1}=e^{-1}=e=a\in H$ . If$a\neq e$ , consider the set$S={a, a^2, a^3, \cdots} = {a^m\mid m\in \mathbb N}$ . Then$S\subset G$ with$G$ finite$\implies S$ has only a finite number of elements. - Moreover, since
$H$ is closed under the operation in$G$ , we have that$$a^2=a\cdot a \in H\text{ since }a\in H\a^3=a^2\cdot a\in H\text{ since }a,a^2\in H\\text{etc}\cdots\\implies a^m\in H, \forall m\in \mathbb N\\implies S\subset H$$ - Now, since
$S$ is finite,$\exists i,j\in \mathbb N$ such that$i\neq j$ and$a^i=a^j$ . Suppose that$i<j$ so that$j-i>0$ and so$j-i\in \mathbb N$ . - Then,
$a^{j-i}=e$ (since$a^i=a^j$ ) with$j-i\geq 1$ (since$j-i>0$ )- If
$j-i=1$ , then$a=a^1=a^{j-i}=e$ , which is impossible since we assumed that$a\neq e$ - So,
$j-i>1 \implies j-i-1>0$ and$j-i-1\in \mathbb N$ $\implies a^{j-i-1}\in S\subset H$ -
BUT,
$a^{-1}=e\cdot a^{-1} = a^{j-1}\cdot a^{-1}=a^{j-i-1}\in H$
- If
- If
- Proof:
2016/05/16
- Review:
- Definition: A group is finite if
$|G|<\infty$ - Theorem (Finite subgroup test): Let
$G$ be a finite group and let$\phi\ne H\subset G$ . Then$$(H\text{ is a subgroup of }G)\Leftrightarrow(ab\in H, \forall a,b\in H)$$ - Note: For a finite group, it is enough to check whether a non-empty subset
$H$ is closed under the operation to determine if$H$ is a subgroup.
- Definition: A group is finite if
- Ex:
- Consider $\mathbb Z_n^$, which is finite, and $k \in \mathbb N$ with $k|n$. Let $$H={\overline x\in \mathbb Z_n^\mid x \bmod k=1}$$
- We need to check that this definition is independent of the representative
$x$ of$\overline x$ - [If
$\overline{x'} = \overline x$ , we need to check$$(x\bmod k =1)\Leftrightarrow(x'\bmod k =1)$$ - But
$\overline{x'} = \overline x$ in$\mathbb Z_n^*\Leftrightarrow x'+x+rn$ for some$r\in \mathbb Z$ - However,
$k|n$ so that$n=ks$ with$s\in \mathbb N$ . Thus$$x'=x+rn=(x+rs)k$$ -
$\implies x'=x\bmod k$ , and$$(x'\bmod k=1)\implies (x'+m'k=1)\text{ for some }m'\in \mathbb Z$$ $$\Leftrightarrow x+(rs)k+m'k=1$$ $$\Leftrightarrow x+k[rs+m']=1\text{ for some }m'\in \mathbb Z$$ $$\Leftrightarrow (x\bmod k=1)\text{ for some }m'\in \mathbb Z$$ $H={\overline x\in \mathbb Z_n^*\mid x\bmod k=1}$ - Here, the operation in
$\mathbb Z_n^*$ is multiplication. If$\overline x, \overline y\in H$ so that$x\bmod k=1$ and$y\bmod k=1$ , then$x+mk=1$ and$y+m'k=1$ for some$m,m'\in \mathbb Z$ and$$1=(x+mk)(y+m'k)=xy+[xm'+my+mm'k]k$$ $$\Leftrightarrow xy\bmod k=1\implies \overline{xy}\in H \implies \overline x\overline y \in H$$ - So, by the finite subgroup test,
$H$ is a subgroup of$\mathbb Z_n^*$ because$H\neq \emptyset$ (since$\overline 1\in H$ because$1\bmod k=1$ )
- Defnition (order of an element): Let
$G$ be a group. For any$a\in G$ , the order of a is defined as the smallest positive integer in such that$a^m=e$ (if it exists. If no such integer exists, then a is said to have infinite order. The order of a is denoted$|a|$ .- Note:
-
- To compute the order of an element$a\in G$, consider the sequence of for for odeuts(?)
$1^1,a^2,a^3\cdots,$ and the first power of a that is equal to$e$ will be the order of$a$
- To compute the order of an element$a\in G$, consider the sequence of for for odeuts(?)
-
-
$|e| = 1$ because$e^1=e$ . In fact, if$a\in G$ with$|a|=1$ , then$a^1=e$ . So the only element in$G$ that has order$1$ is the identity$e$ .
-
-
$\forall a\in G, |a|=|a^{-1}|$
- Proof: Suppose that
$|a|=m$ . Then,$a^m=e$ . So,$$(a^{-1})^m=a^{-m}=(a^m)^{-1}=e^{-1}=e$$ So, by definition of the order of an element, since$(a^{-1})^m=e$ , we have:$$|a^{-1}|\le m=|a|$$ One prove similarly that$|a|=|a^{-1}|\implies |a|=|a^{-1}|$
-
-
$\forall a\in G, |\langle a\rangle|=|a|$ where$\langle a\rangle={a^r \mid r\in \mathbb Z}$ (i.e., the number of element in$\langle a\rangle$ is equal to$|a|$ )
- Proof: exercise
-
-
- If
$|G|<\infty$ , then$|a|<\infty, \forall a\in G$ , In fact,$|a|\le |G|$
- Proof: exerciese
- If
-
- Note:
- E.x.
-
-
$\mathbb Z_6={\overline 0, \overline 1, \overline 2, \overline 3, \overline 4, \overline 5} \leadsto$ Here: operation is$+$ and$e=\overline 0$ Then:$$|\overline 0|=1$$ $$|\overline 1|=6\text{ because }\overline 1+\overline 1+\overline 1+\overline 1+\overline 1+\overline 1=\overline 6=\overline 6$$ $$\overline 2|=3 \text{ because } \overline 2+\overline 2+\overline 2=\overline 6=\overline 0$$ $$|\overline 3|=2 \text{ because } \overline 3+ \overline 3=\overline 6 = \overline 0$$ $$|\overline 4|=3$$ $$|\overline 5|=6$$
- Note that
$$\overline 5^{-1}=\overline 1\text{ and }|\overline 5|=|\overline 1|=6,$$ $$\overline 4^{-1}=\overline 2\text{ and }|\overline 4|=|\overline 2|=3,$$ $$\overline 3^{-1}=\overline 3$$
-
-
-
$\mathbb Z_6^* = {\overline 1, \overline 5}\leadsto$ Here: operation is$\cdot$ and$e=\overline 1$
-
$|\overline 1|=1, |\overline5|=2$ because$\overline 5\cdot \overline 5 = \overline 1$
-
-
- Not ever element of a group has finite order
- e.g.
$(G,\cdot)=(\mathbb Z, +)$ . Then,$2\in \mathbb Z$ has infinite order because$2+2+\cdots+2=2m\neq0,\forall m\in \mathbb N$
-
- New example of a finite group: the Dihedral group
$D_n, n \ge 3$ . These groups represent symmetries of regular n-gons in$\mathbb R^2$ -
$n=3$ : regular 3-gon is$\mathbb R^2$ is an equilateral triangle. - Consider the 6 following symmetries of the triangle (3 rotations+3 reflections):
-
$R_0=$ rotation about the origin by$0$ rad conterclockwise -
$R_1=$ rotation about the origin by$\frac{2\pi}{3}$ rad conterclockwise -
$R_2=$ rotation about the origin by$\frac{4\pi}{3}$ rad conterclockwise -
$H$ : flip from height through point B in graph -
$V$ : flip from height through point A in graph -
$D$ : flip from height through point C in graph
-
-
2016/05/18
-
Review:
-
$D_{n}=($ dihedral group $)=($group of symmetries of regular n-gon in $ \mathbb R^2)$ (Here: rotations and reflections)$R_0, R_1, R_2, H,V,D\cdots$ - Set
$D_3={R_0, R_1, R_2, H,V,D}$ - Claim:
$D_3$ is a group under composition - First thing to check is that
$D_3$ is closed under composition,i.e.$\forall f,g\in D_3, f\circ g\in D_3$ - Table:
$f\circ g$ $ R_0 $ $ R_1 $ $ R_2 $ $ H $ $ V $ $ D $ $R_0 $ $ R_0 $ $ R_1 $ $ R_2 $ $ H $ $V $ $ D $ $R_1 $ $ R_1 $ $ R_2 $ $ R_0 $ $ D $ $ H$ $V$ $R_2$ $R_2$ $R_0$ $R_1$ $V$ $D$ $H$ $H$ $H$ $V$ $D$ $R_0$ $R_1$ $R_2$ $V$ $V$ $H$ $D$ $R_2$ $R_0$ $R_1$ $D$ $D$ $H$ $V$ $R_1$ $R_2$ $R_0$ -
-
-
- Also:
- composition is assotiation
-
$R_0$ is the identity - every element as an inverse:$R_0^{-1}=R_0, R_1^{-1}=R_2=R_2^{-1}=R_1, H^{-1}=H,V^{-1}=V,D^{-1}=D$ -$\implies D_3$ is a group with 6 elements- In general,
$D_{n}$ is a finite group with$|D_n|=2n$ , where-
$D_{n}$ will contain$n$ rotation (about the origin, counterclowise by$\frac{2\pi}{r}$ rad.) and$n$ reflections (read about in a textbook)
-
- when
$n=4$ :
- In general,
- Also:
- composition is assotiation
-
-
- Definition: A group G is called cyclic if
$G=\langle a\rangle$ for some$a\in G$ , where$$\langle a\rangle:={a^m\mid m\in \mathbb Z}$$ (with$a_0=e$ and$a^{-m}=(a^m)^{-1}$ ). In this case, a is called a generator of$G$ - Ex:
-
-
$(\mathbb Z,+)$ . Then$\mathbb Z=\langle 1\rangle$ because,$\forall m\in \mathbb Z$ ,
- if
$m>0$ :$m=1+1+\cdots+1$ ($m$ times)$= m(1)$ $0=0(1)$ - if
$m<0$ :$m=-(-m)=-(1+\cdots+1)$ ($-m$ times) - Similarly, we see that
$\mathbb Z=\langle -1\rangle$ . We then see that generators are not unique. - Note: Here
$\mathbb Z=\infty$ and$|1|=\infty$ , which is a good thing! We will see that if$G=\langle a\rangle$ , then$|G|=|a|$
-
-
-
$(\mathbb Z_n,+)$ . Then,$\mathbb Z_n=\langle \overline 1\rangle=\langle \overline{-1}\rangle=\langle \overline{n-1}\rangle$
-
$\leadsto \mathbb Z_n$ is a cyclic group it has at least 2 possible generators, usually,$\overline 1$ and$\overline{n-1}$ - But, may have more than these two.
- e.g.
$\mathbb Z_8 = \langle \overline 1\rangle= \langle \overline 7\rangle= \langle \overline 3\rangle= \langle \overline 5\rangle$ because:$\overline 3$ $\overline 3+\overline 3 = \overline 6$ $\overline 3+\overline 3 + \overline 3=\overline 9=\overline 1$ $\overline 3+\overline 3+\overline 3+\overline 3=\overline 4$ $\overline 3+\overline 3+\overline 3+\overline 3+\overline 3=\overline 7$ $\overline 3+\overline 3+\overline 3+\overline 3+\overline 3+\overline 3=\overline 2$ $\overline 3+\overline 3+\overline 3+\overline 3+\overline 3+\overline 3+\overline 3=\overline 5$ - But,
$\overline 2$ is not a generator since$$\langle \overline 2\rangle={\overline 0, \overline 2, \overline 4=\overline 2+\overline 2, \overline 6 = \overline 2+\overline 2+\overline 2}\subsetneqq \mathbb Z_8$$
- e.g.
-
-
- Questions:
- What is the order of a generator?
- What are the possible generator?
2016/05/20
- Review:
- A group
$G$ is cyclic if$G=\langle a\rangle={a^m\mid m\in \mathbb Z}$ for some$a\in G$ . - Note:
$a^0=e$ and$(a^{-m})=(a^m)^{-1}\oplus a = (\text{generator of }G)$ - Questions:
- What is the order of a generator of
$G$ ? - Generators are not unique. What are the possible generator of
$G$ ?
- What is the order of a generator of
- We first need some technical facts about cyclic groups
- A group
- Prop: Let
$G$ be a group and$a\in G$ -
- If
$|a|=\infty$ , then$a^i\neq a^j, \forall i\neq j$
- If
-
- If
$|a|=n<\infty$ , then$\langle a\rangle={e,a,a^2,\cdots, a^{n-1}}$ and$(a^i=a^j)\Leftrightarrow (n\mid i-j)$
- If
- Morover, if
$k\in \mathbb N$ , then$\langle a^k\rangle=\langle a^{gcd(n,k)}\rangle$ and$|a^k|=\frac{n}{gcd(n,k)}$ - Proof:
-
- Suppose that
$|a|=\infty$ . Assume$a^i=a^j$ with$i\neq j$ . Suppose that$i<j$ . Then,$a^{j-i}=e$ with$j-i>0$ .$$\implies |a|=(\text{smallest position integer }d\text{ such that }a^d=e)\leq j-i<\infty$$ But, this contradicts the fact that$|a|=\infty$ . So, $i=j $$$\implies a^i\neq a^j,\forall i\neq j$$
- Suppose that
-
- Suppose
$|a| = n\infty$ . Let us first show that$$\langle a\rangle={e,a,a^2,\cdots, a^{n-1}}$$ By definition of$\langle a\rangle$ , we of course have${e,a,a^2,\cdots, a^{n-1}}\subset\langle a\rangle$ . We just have to show that$\langle a\rangle\subset {e,a,a^2,\cdots, a^{n-1}}$ . Let$b\in \langle a\rangle$ . Then$b=a^m$ for some$m\in \mathbb Z$ . If$0\leq m\leq n-1$ , then$b\in {e,a,a^2,\cdots, a^{n-1}}$ . So we can assume that$m\geq n$ or$m < 0$ . Using the division algorithm, we can write$$m=nq+r\text{ with }0\leq r<n$$ $\implies b=a^m=a^{(nq+r)}=a^{nq}a^r=(a^n)^q\cdot a^r = e^q\cdot a^r = e\cdot a^r=a^r$ So,$b=a^r$ with$0\leq r\leq n-1\implies b\in {e,a,a^2,\cdots, a^{n-1}}$ $$\implies\langle a\rangle\subset {e,a,a^2,\cdots, a^{n-1}}$$ $$\implies \langle a\rangle = {e,a,a^2,\cdots, a^{n-1}}$$ Now assume that$a^i=a^j$ . Then,$a^{i-j}=e$ . Again, using the division algorithm,$$i-j=np+s$$ with$0\leq s<n$ . So, $a^{i-j}=a^{np+s}=a^s\implies $ either$s=0$ or$s\geq |a|$ since$a^s=e$ . BUT,$|a|=n$ and$s<n$ . So, must have that s=0.$$\implies i-j=np\implies n\mid i-j$$ Conversely, if$n\mid i-j$ , then$i-j=np$ for some$p\in\mathbb Z$ . So,$a^{i-j}=a^{np}=(a^n)^p=e^p=e$ $$\implies a^i = a^j$$ THUS,$(a^i=a^j)\Leftrightarrow(n\mid i-j)$
- Suppose
-
- Let
$d=gcd(n,k)$ . In purticular,$d\mid k$ so that$k=dp$ for some$p\in\mathbb Z$ . Note that$d>0$ and$k>0$ so that$p\in \mathbb N$ . Let us show that$$\langle a^k\rangle =\langle a^d \rangle$$ . First note that since$k=dp$ , we have that$$a^k=a^{dp}=(a^d)^p\in \langle a^d\rangle$$ . Then, since$\langle a^d\rangle$ is closed under the operation and inverses, and$a^k\in \langle a^d\rangle$ , we have that$(a^k)^m\in \langle a^d\rangle, \forall m\in \mathbb Z$ .$$\langle a^k\rangle\subset \langle a^d\rangle$$ Let us check that$\langle a^d \rangle\subset\langle a^k\rangle$ . Let$b\in \langle a^d\rangle$ and let us show that$b=(a^k)^r$ for some$r\in \mathbb Z$ . Since$d=gcd(n,k), \exists r,s\in \mathbb Z$ such that$$rk+sn=d$$ Therefore,$a^d=a^{rk+sn}=a^{rk}\cdot a^{sn}=(a^k)^r\cdot (a^n)^s=(a^k)^r\cdot e^s = (a^k)^r$ $$\implies a^d=(a^k)^r$$ Then, if$b\in \langle a^d\rangle$ so that$b=(a^d)^m$ for some$m\in \mathbb Z$ , we get$$b=((a^k)^r)^m = (a^k)^{rm}\in\langle a^k\rangle$$ $$\implies \langle a^d\rangle\subset \langle a^k \rangle$$ $$\implies \langle a^d\rangle= \langle a^k \rangle$$ The last thing to verify is that$|a^k|=\frac{n}{d}$ . We have seen that if$b\in G$ and$|b|=m$ then$$\langle b\rangle={e,b,\cdots, b^{m-1}}$$ so that$|b|=m$ . In particular,$|\langle b\rangle|=|b|=m$ . Thus,$|a^d|=|\langle a^d\rangle|=|\langle a^k\rangle|=|a^k|$ . So, to prove that$|a^k|=\frac{n}{d}$ , it is enough to show that$|a^d|=\frac{n}{d}$ . Now,$$(a^d)^{\frac{n}{d}}=a^n=e$$ $$\implies \frac{n}{d} \geq |a^d|$$ Let us assume that$|a^d|<\frac{n}{d}$ . So,$\exists m\in \mathbb N$ such that$(a^d)^m=e$ and$m<\frac{n}{d}$ . So,$$a^{dm}=(a^d)^m=e\text{ with }dm < d(\frac{n}{d})=n$$ So,$dm\in \mathbb N$ such that$a^{dm}=e$ and$dm<n$ , which is impossible because$n=|a|$ . Therefore,$|a^d|\geq \frac{n}{d}$ . So,$|a^d|=\frac{n}{d}$
-
2016/05/25
-
Review:
-
Prop: Let
$G$ be a group and$a\in G$ - i) If
$|a|=\infty$ , then$a^i\neq a^j, \forall i\neq j$ - ii) If
$|a|=n<\infty$ , then$\langle a\rangle={e,a,a^2,\cdots, a^{n-1}}$ and$(a^i=a^j)\Leftrightarrow (n\mid i-j)$ - Morover, if
$k\in \mathbb N$ , then$\langle a^k\rangle=\langle a^{gcd(n,k)}\rangle$ and$|a^k|=\frac{n}{gcd(n,k)}$
-
Prop: Let
-
Order of a generator of a cyclic group
-
COR: Let
$G$ be a group and$a\in G$ , then- (i)
$|\langle a \rangle|=| a|$ - (ii)
$a^k=e\implies |a| \mid k$ (if${a}=n<\infty$ )
- (i)
- Proof:
- (i) If
$|a|=\infty$ , then$a^i\neq a^j$ for all$i,j\in \mathbb Z$ with$i\neq j$ . So$|\langle a\rangle|=\infty$ . But if$|a|=n<\infty$ , the$\langle a\rangle ={e, a, a^2, \cdots, a^{n-1}}$ , so that $|\langle a\rangle|=n=|a| - (ii) Suppose that
$|a|=n<\infty$ . Let$k\in \mathbb Z$ such that$a^k=e$ . Then,$a^k=e=a^0\implies n\mid k=0\implies n\mid k\implies |a| \mid k$ if$|a| = n$
- (i) If
- Let $G = \langle a\rangle $ with
$a\in G$ be a cyclic group. Any generator of$G$ is of the form$a^m$ with$m\in \mathbb Z$ because any generator of$G$ must be an element of$G$ and$G={a^m\mid m\in \mathbb Z}$ . But, what powers of$a$ correspond to generators? -
Thm: Let
$G=\langle a\rangle$ be a cyclic group with$a\in G$ . Then:- (i) If
$|G|=\infty$ , then$a$ and$a^{-1}$ are the only generators of$G$ - (ii) If
$|g|=n<\infty$ , then$G=\langle a^k\rangle$ iff$gcd (n,k)=1$ . - Proof:
- (i) Exercise
- (ii) Suppose that
$G=\langle a^k\rangle $ . Then, by Prop (ii),$|a^k|=\frac{n}{gcd(n,k)}$ . But by the COR,$|a^k|=|G|=n$ since$a^k$ is a generator. Thus,$$\frac{n}{gcd(n,k)}=n\implies gcd(n,k)=1$$ Conversely, suppose that$gcd(n,k)=1$ . Then, Prop (ii) $$\langle a^k\rangle=\langle a^{gcd(n,k)}\rangle=\langle a^1\rangle =\langle a\rangle =G$
- (i) If
-
COR:
$1$ and$-1$ are the only generators of$\mathbb Z=\langle 1\rangle=\langle -1\rangle$ -
COR: (Generator of
$\mathbb Z_n$ )-
$\mathbb Z_n=\langle \overline k\rangle$ iff$ged(n,k)=1$ iff$\overline k\in \mathbb Z_n^*$ - E.g.
$\mathbb Z_8=\langle \overline 1\rangle=\langle \overline 3\rangle=\langle \overline 5\rangle=\langle \overline 7\rangle$ and these are the only generators.
-
-
Thm: (Fundamental Theorem of cyclic groups)
- Every subgroup of a cyclic group
$G=\langle a\rangle$ (with$a\in G$ ) is cyclic. Moreover, if$|a|=n$ , then the order of any subgroup of$G$ is a divisor of$n$ , and, for every positive divisor$k$ of$n$ , the group$G$ has exactly$1$ subgroup of order$k$ , namely,$\langle a^{\frac{n}{k}}\rangle$ - What does it mean?
- If
$G=\langle a\rangle$ and$H$ is a subgroup of$G$ , then$H=\langle a^m\rangle$ for some$m\in \mathbb Z$ - If
$|a|=n$ , then$H=\langle a^k\rangle$ is a subgroup of$G$ of order$k$ ,$\forall k\in \mathbb N$ such that$k\mid n$ , and there is the only subgroup of$G$ of order$k$
- If
- E.g.
$n=20$ : The subgroups of$G$ are: $$H=\langle e\rangle, \langle a^{10}\rangle, \langle a^5\rangle, \langle a^4\rangle, \langle a\rangle=G$$where $ e=a^{20}, a^{10}=a^{\frac{20}{2}}, a^5=a^{\frac{20}{4}}, a^4=a^{\frac{20}{5}}, a=a^{\frac{20}{20} }$ - Note: In Galliam's book, the last part of the proof of the theorem is incorrect.
- Proof:
- Suppose that
$G=\langle a\rangle$ with$a\in G$ . And let$H$ be a subgroup of$G$ . If$H={e}$ , then$H=\langle e\rangle$ , which is cyclic. But if$H\neq { e}$ , then$\exists e\neq a^m\in H$ . This means in particular that$m\neq 0$ . Let us first show that$m$ can be chosen to be positive. Suppose instead that$m< 0$ . Then,$-m>0$ and$e^{-m}\in H$ (because$H$ is closed under inverses since it is a subgroup of$G$ ). Therefore,$H$ contains a positive power of$a$ . Let$m$ be the smallest positive integer such that$a^m\in H$ . Let us show that$H=\langle a^m\rangle$ -
$*$ $\langle a^m\rangle \subset H$ because$a^m\in H$ and$H$ is closed under multiplication and inverses (since it is a subgroup) so that$(a^m)^k\in H$ -
$*$ $H\subset\langle a^m\rangle $ : Let$b\in H$ and let us show that$b=(a^m)^q$ for some$q\in \mathbb Z$ . Since$H\subset G=\langle a\rangle$ ,$b=a^k$ for some$k\in \mathbb Z$ . By the division algorithm,$k=mq+r$ with$0\leq r< m$ . Then,$$a^k=a^{mq+r}=(a^m)^q\cdot a^r$$ Let us show that$r=0$ . But,$$a^r=(a^m)^{-q}\cdot a^k\in H$$ since$(a^m)^{-q}\in H$ and$a^k\in H$ . Since$m$ was chosen to be the smallest positive integer such that$a^m\in H$ and$0\leq r<m$ ,$a^r\in H$ forces$r=0$ $\implies b\in (a^m)^q\in \langle a^m\rangle$
- Suppose that
- Every subgroup of a cyclic group
-
COR: Let
2016/06/27
-
Review:
-
Thm: (Fund thm of cyclic groups)
- Every subgroup of a cyclic group
$G=\langle a\rangle$ (with$a\in G$ ) is cyclic. Moreover, if$|a|=n$ , then the order of any subgroup of$G$ is a divisor of$n$ , and, for every positive divisor$k$ of$n$ , the group$G$ has exactly$1$ subgroup of order$k$ , namely,$\langle a^{\frac{n}{k}}\rangle$ - Proof: proof of case where |G|=\infty (exercise)
- Every subgroup of a cyclic group
-
Thm: (Fund thm of cyclic groups)
-
E.g.
-
-
$\mathbb Z_8$ what are the subgroups?
-
$|\mathbb Z_8|=8=n\leadsto$ positive divisors of$8$ :$1,2,4,8$ - Suppose of
$\mathbb Z_8$ :-
$k=1:\langle \overline 8 / 1\rangle=\langle \overline 8\rangle =\langle \overline 0 \rangle ={\overline 0}$ order$1$ -
$k=2:\langle \overline 8 / 2\rangle=\langle \overline 4\rangle ={\overline 0, \overline 4}$ order$2$ -
$k=4:\langle \overline 8 / 4\rangle=\langle \overline 2\rangle ={\overline 0,\overline 2,\overline 4}$ order$4$ -
$k=8:\langle \overline 8 / 8\rangle=\langle \overline 1\rangle ={\overline 0, \overline 1, \overline 2, \overline 3, \overline 4, \overline 5, \overline 6, \overline 7}$ order$8$
-
- Note that since
$gcd(3,8)=gcd(5,8)=gcd(7,8)=1\implies \overline 3, \overline 5,\overline 7$ generate$\mathbb Z_8$ . That is,$\langle \overline 3\rangle=\langle \overline 5\rangle=\langle \overline 7\rangle$ - In general, for
$\mathbb Z_n$ , for each positive divisor$k$ of$n$ ,$\langle \frac{n}{k}\rangle$ is the only of$\mathbb Z_n$ of order$k$
-
-
- $\mathbb Z_8^={\overline 1, \overline 3, \overline 5, \overline 7}$ Is $\mathbb Z_8^$ cyclic?
- If $\mathbb Z_8^$ is cyclic then $\mathbb Z_8^=\langle \overline k\rangle$ with
$k=1,3,5,7$ . - But,
$\langle \overline 1\rangle={(\overline 1)^m\mid m\in \mathbb Z}={\overline 1}\leadsto$ trifvial subgroup -
$\langle 3\rangle = {\overline 1,\overline 3} \subsetneqq \mathbb Z_8^*$ order$2$ -
$\langle 5\rangle = {\overline 1,\overline 5} \subsetneqq \mathbb Z_8^*$ order$2$ -
$\implies Z_8^*$ is not cyclic
-
-
$Z_5^* = {\overline 1,\overline 2,\overline 3,\overline 4}$ and $Z_5^=\langle \overline 2\rangle \implies Z_5^$ is cyclic of order$4$
- The subgroups of
$Z_5^*$ will correspond to positive divisors of$4$ :$1,2,4$ -
$k=1: \langle (\overline 2)^{4/1}\rangle=\langle \overline 1\rangle={\overline 1}$ order$1$ -
$k=2: \langle (\overline 2)^{4/2}\rangle=\langle \overline 4\rangle={\overline 1, \overline 4}$ order$2$ -
$k=4: \langle (\overline 2)^{4/4}\rangle=\langle \overline 2\rangle=\mathbb Z_5^*$ order$4$
-
-
-
The relationship between the various subgroups of a group
$G$ can be illustrated using the subgroup lattice of the group. This is a diagram that includes all the subgroup, and connects a subgoup$H$ at one level to a subgroup$K$ at a higher level if$H\subsetneqq K$ - Note: The subgroup lattice can be constructed for any group, not just cyclic groups
-
Ex.
-
-
$\mathbb Z_8$ : subgroups
-
$\langle \overline 0\rangle = {\overline 0}$ order$1$ -
$\langle \overline 4\rangle = {\overline 0,\overline 4}$ order$2$ -
$\langle \overline 2\rangle = {\overline 0,\overline 2,\overline 4,\overline 6}$ order$4$ -
$\langle \overline 1\rangle = \mathbb Z_8$ order$4$ - So subgroup lattice for Z8:
-
-
-
-
-
$\mathbb Z_{20}$ : order is$n=20 \implies$ positive divisors are$k=1,2,4,5,10,20$
-
$k=1: \langle\overline{20} / 1\rangle = \langle\overline 0\rangle = {\overline 0}$ order 1 -
$k=2: \langle\overline{20}/2\rangle = \langle\overline 10\rangle = {\overline 0,\overline{10}}$ order 2 -
$k=4: \langle\overline{20}/4\rangle = \langle\overline 5\rangle = {\overline 0,\overline 5,\overline{10},\overline{15}}$ order 4 -
$k=5: \langle\overline{20}/5\rangle = \langle\overline 4\rangle = {\overline 0,\overline 4,\overline 8,\overline{12},\overline{16}}$ order 5 -
$k=10: \langle\overline{20}/10\rangle = \langle\overline 2\rangle = {\overline 0,\overline 2,\overline 4,\overline 6,\overline 8,\overline{10},\overline{12},\overline{14},\overline{16},\overline{18}}$ order 10 -
$k=20: \langle\overline{20}/20\rangle = \langle\overline 1\rangle = \mathbb Z_{20}$ order 20 - Subgroup lattice of
$\mathbb Z_{20}$ :
-
-
-
-
-
$Z_8^*={\overline 1, \overline 3, \overline 5, \overline 7}\leadsto$ the only subgroup are:
-
$\langle \overline 1\rangle = {\overline 1}$ order$1$ -
$\langle \overline 3\rangle = {\overline 1,\overline 3}$ order$2$ -
$\langle \overline 5\rangle = {\overline 1,\overline 5}$ order$2$ -
$\langle \overline 7\rangle = {\overline 1,\overline 7}$ order$2$ -
$\mathbb Z_8^*$ order$4$ - Subgroup lattice of
$\mathbb Z_8^*$ :
-
-
-
-
-
$Z_5^*={\overline 1,\overline 2,\overline 3,\overline 4}\leadsto$ subgroups:
-
$\langle \overline 1\rangle = {\overline 1}$ order$1$ -
$\langle \overline 4\rangle = {\overline 1,\overline 4}$ order$2$ - $\mathbb Z_5^* $ order
$4$ - Subgroup lattice of
$Z_5^*$ :
-
-
-
-
-
$\mathbb Z_4 = {\overline 0,\overline 1,\overline 2,\overline 3}\leadsto$ subgroups: cyclic of order$4$ and subgroups are:
-
$\langle \overline 0\rangle = {\overline 0}$ order$1$ -
$\langle \overline 2\rangle = {\overline 0,\overline 2}$ order$2$ -
$\mathbb Z_4$ order$4$ - subgroup lattice of
$\mathbb Z_4$ :
-
-
-
- Note: The groups $\mathbb Z_8^, \mathbb Z_5^$ and
$\mathbb Z_4$ are all finite of order$4$ . The operation on $\mathbb Z_8^$ and $\mathbb Z_5^$ is multiplication, where as the operation on$\mathbb Z_4$ is addition. We see that $\mathbb Z_5^$ and $\mathbb Z_4$ have the same subgroup lattice, which is not surprising because they bothcyclic. But their subgroup lattices differ from the subgroup of lattice of $\mathbb Z_8^$, which is natural since $ \mathbb Z_8^*$ is not cyclic. We will see that any 2 cyclics of the same finite order$n$ are "isomorphic" (i.e. have the same shape)$$G= \langle a\rangle = {e,a,\cdots, a^{n-1}} (|a|=n)$$ $$\langle a^{n/k}\rangle \text{ with }k\mid n$$
- Note: The groups $\mathbb Z_8^, \mathbb Z_5^$ and
2016/05/30
-
$G=\langle a\rangle$ finite cyclic group of order n (so that |a|=n). In this, we can determine explicitly the number of elements in G of a fixed order d: it is given by the Euler$\phi$ (PH1) function:$$ \phi(d)= \begin{cases} 1,& \text{if } d=1\ \text{# of positive integer } k<d \text{ such that }gcd(k,d)=1, & \text{if } d\neq 1 \end{cases} $$ Note that, $|\mathbb Z_n^* |=\phi(n) $ (since$\mathbb Z_n^*$ consists of all equivalence classes$\overline k$ in$\mathbb Z_n$ such that gcd(k,n)=1 with$1\leq k\leq n-1$ ) -
E.g.
$ 3$ | $ 5$ | ||||||||
---|---|---|---|---|---|---|---|---|---|
$ 1$ | $ 2$ | $ 2$ | $ 6$ | $ 4$ | $ \cdots$ |
- Thm (Number of elements of a given order in a finite cyclic group):
- Let
$G$ be a finite cyclic group of order$n$ . If$d$ is a positive divisor of$n$ , then the number of elements of order$d$ in$G$ is$\phi(d)$ . - Note: recall that the order of any element must divide
$n$ , so d must be a divisor of$n$ . - Proof: By the Fundamental Thm of cyclic groups,
$\exists$ unique subgroup$H$ of$G$ of order d. Moreover,$H$ is cyclic so that$H=\langle b\rangle$ for some$b\in G$ with$|b|=d$ . Let$c\in G$ be any other element of order d. Then,$\langle c\rangle$ is also a subgroup of$G$ of order$d$ . But$H$ is the only subgroup of$G$ of order$d$ , implying$\langle c\rangle = H$ . So$c\in \langle c\rangle=H$ . This means that$H$ contains all the elements of$G$ of order$d$ . Also,$c=b^k$ for some$0\leq k\leq d-1$ since$H={e,b,\cdots, b^{n-1}}$ . Recall that if$H=\langle b\rangle$ , then$|b^k| = \frac{|b|}{gcd(|b|,k)}$ . But here$|b|=d$ so that$|b^k| = \frac{d}{gcd(d,k)}$ . Thus, $|c| = |b^k|=d\Leftrightarrow \frac{d}{gcd(d,k)} = d\Leftrightarrow gcd(d,k) = 1\implies $ {element of G of order d} =${b^k\mid gcd(d,k) = 1}:=\phi(d)$
- Let
-
Definition: Let
$G_1$ and$G_2$ be two groups. A homomorphism$\phi$ from$G_1$ to$G_2$ is a mapping$\phi:G_1\implies G_2$ that preserves the group operation$$\phi(ab) = \phi(a)\phi(b), \forall a,b\in G_1$$ Moreover, if$\phi$ is a bijection whose inverse is also a homomorphism, then$\phi$ is called an isomorphism. -
E.x.
-
-
$G_1 = (GL(n,\mathbb R),\cdot)$ and $G_2 = (\mathbb R^, \cdots)$. Consider the map: $$\phi: GL(n,\mathbb R)\implies \mathbb R^$$$$A \mapsto \det A$$ Then,$\phi$ is a group homomorphism because: Let$A,B\in GL(n\mathbb R)$ , do we have that:$$\phi(AB) \stackrel{?}{=} \phi(A)\phi(B)$$ Yes:$\phi(AB) = \det(AB) = (\det A)(\det B) = \phi(a)\phi(B)$
-
-
- $G_1 = (\mathbb R^,\cdot)=G_2$. Consider: $$\phi: \mathbb R^\implies\mathbb R^$$ $$x\mapsto |x|$$ This is a group homomorphism because, $\forall x,y\in \mathbb R^
$, $ $\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y)$$
- $G_1 = (\mathbb R^,\cdot)=G_2$. Consider: $$\phi: \mathbb R^\implies\mathbb R^$$ $$x\mapsto |x|$$ This is a group homomorphism because, $\forall x,y\in \mathbb R^
-
- Let
$G_1=G_2 = (\mathbb R[x],+)$ , where$\mathbb R[x]=$ {polynomial in x with coefficients in$\mathbb R$ }. Then$(\mathbb R[x],+)$ is a group (proof in exercise). Consider the map:$$\phi:\mathbb R[x]\implies \mathbb R[x]$$ $$p(x)\mapsto p'(x)$$ Then,$\phi$ is a homomorphism because,$\forall p,q \in \mathbb R[x]$ ,$$\phi(p(x)+q(x))=[p(x)+q(x)]' = p'(x) + q'(x) = \phi(p(x))+\phi(q(x))$$ Note that$\mathbb R[x]$ is a vector space over$\mathbb R$ under addition and the derivation map$\phi$ is linear. In general, if$V$ is a vector space, then$(V, +)$ is a group and any linear map$\phi:V\implies V$ is a homomorphism.
- Let
-
-
Let us look at some examples of isomorphisms:
-
-
$G_1=(\mathbb R, +)$ and$G_2 = (\mathbb R^{>0}, \cdots)$ . Then,$$\phi:\mathbb R\implies \mathbb R^{>0}$$ $$x\mapsto 2^x$$ is an isomorphism.
- Proof:
$\phi$ is a bijection. We just need to check that$\phi$ and$\phi^{-1}:\mathbb R^{>0}\implies \mathbb R, y\mapsto \log_2y$ are homomorphisms. Let$x,x'\in \mathbb R$ . Then,$$\phi(x+x') = 2^{(x+x')}=2^x\cdot 2^{x'} = \phi(x)\phi(x')$$ Similarly, if$y,y'\in \mathbb R^{>0}$ , then:$$\phi^{-1}(yy') = \log_2(yy') = \log_2(y)+\log_2(y') = \phi^{-1}(y)\phi^{-1}(y')$$$\implies \phi$ is a group isomorphism.
-
-
- Let
$G=\langle a\rangle$ be a cyclic group. Then,
- If
$|a|=\infty$ , the map$\phi:G=\langle a\rangle\implies\mathbb Z = \langle 1\rangle, a^k\mapsto k$ is an isomorphism - If
$|a| = n$ , then map$\phi:G=\langle a\rangle\implies \mathbb Z_n=\langle \overline 1\rangle, a^k\mapsto \overline k$ is an isomorphism (proof as exercise)
- Let
-
2016/06/01
-
Note:
-
- Many authors define an isomorphism as a bijective homomorphism. Even with that definition, we have that
$\phi^{-1}$ itself as a homomorphism.
- Many authors define an isomorphism as a bijective homomorphism. Even with that definition, we have that
-
- Not every bijection is a homophophism (and thus an isomorphism)
- E.g.
$\phi:(\mathbb R, +)\implies (\mathbb R, +),x\mapsto x^3$ is a bijection, but not a homomorphism since$$\phi(x+y) = (x+y)^3\neq x^3+y^3=\phi(x)+\phi(y)$$ if$x,y\neq 0$
-
-
Prop: Let
$\phi: G_1\implies G_2$ be a isomorphism, the inverse of$\phi$ is also isomorphism.- Proof: Let
$c,d\in G_2$ . Since$\phi$ is onto (because it is a bijection),$\exists a,b\in G$ , such that$c=\phi(a)$ and$d=\phi(b)$ . Therefore,$$\phi^{-1}(cd) = \phi^{-1}(\phi(a)\phi(b)) \stackrel{\text{because }\phi(a)\phi(b) = \phi(ab)\text{ since }\phi\text{ is a homomorphism}}{=} \phi^{-1}(\phi(ab)) = ab = \phi^{-1}(c)\phi^{-1}(d)$$ $\implies \phi^{-1}$ is homomorphism. Also since$\phi$ is bijection,$\phi{-1}$ is also bijection, and so$\phi^{-1}$ is isomorphism.
- Proof: Let
-
Def: Two groups
$G_1$ and$G_2$ are called isomorphic if$\exists$ an isomorphism$\phi G_1\implies G_2$ . This is denoted$G_1 \simeq G_2$ -
Isomorphic groups are considered to be the same
-
Remark: Isomorphisms may not exist
-
E.g.
- (i) $\mathbb Z_{10}^* \not \simeq \mathbb Z_{12}^$. $$\mathbb Z_{10}^={\overline 1, \overline 3, \overline 7, \overline 9}$$ $$\mathbb Z_{12}^={\overline 1, \overline 5, \overline 7, \overline{11}}$$ $$\text{(finite groups of order 4)}$$ Note that $\mathbb Z_{10}^=\langle \overline 3\rangle$ is cyclic, where as $\mathbb Z_{12}^$ is not cyclic: $$\langle \overline 1\rangle = {\overline 1}$$ $$\langle \overline 5\rangle = {\overline 1, \overline 5}$$ $$\langle \overline 7\rangle = {\overline 1, \overline 7}$$ $$\langle \overline{11}\rangle = {\overline 1, \overline{11}}$$ $$\text{we see that }\overline k^2=1, \forall \overline k\in \mathbb Z_{12}^$$
$\implies$ We don't expect to be able to find an isomorphism because $\mathbb Z_{10}^$ and $\mathbb Z_{12}^$. Suppose instead that $ \exists$ isomorphism $\phi: \mathbb Z_{10}^\implies \mathbb Z_{12}^$. Then: $ $\phi(\overline 9) = \phi(\overline 3 \cdot \overline 3)=\phi(\overline 3)\cdot \phi(\overline 3) = \overline 1 \text{ since } \overline k^2=1, \forall \overline k\in \mathbb Z_{12}^$$ $$\phi(\overline 1) = \phi(\overline 1\cdot \overline 1) = \phi(\overline 1)\cdot \phi(\overline 1)=\overline 1 \text{ since } \overline k^2=1, \forall \overline k\in \mathbb Z_{12}^$$$\implies \phi(\overline 9)= \phi(\overline 1)\implies \overline 9 = \overline 1$ in $\mathbb Z_{10}^$ since $\phi$ is a bijection, which is impossible! So, we get contradition, implying that no isomophism exists between $\mathbb Z_{10}^$ and$\mathbb Z_{12}^*$ - (ii)
$G_1=(\mathbb Q,+)$ and$G_2=(\mathbb Q^*, \cdot)$ . Then$G_1\not \simeq G_2$ .- Pf: So, instead that
$exists$ isomorphism$\phi:G_1\implies G_2$ so that$\phi$ is a bijective homophism. This means imparticular that$\phi$ is onto. So since $-1\in \mathbb Q^$, $\exists a\in \mathbb Q$ such that $\phi(a) = -1$ $$-1=\phi(a)=\phi(a/2+a/2) \stackrel{\phi\text{ is a homomorphism}}{=} \phi(a/2) + \phi(a/2)\implies (\phi(a/2))^2 = -1\text{ with }\phi(a/2)\in \mathbb Q^, \text{ which is impossible!}$$$\implies$ we get a contradiction$\implies(\mathbb Q,+)\not \simeq(\mathbb Q^*, \cdot)$ . Then$G_1\not \simeq G_2$ - Nonetheless, isomorphism do exist! see next example
- Pf: So, instead that
- (iii)
$$\phi: (\mathbb R,+)\implies (\mathbb R^{>0}, \cdot)$$ $$x\mapsto 2^x$$ is an isomorphism, so that -
- To show that 2 groups
$G_1$ and$G_2$ are isomorphic, one needs to construct a map$\phi: G_1\implies G_2$ that is isomorphism
- e.g.
$G_1=(\mathbb Z,+), G_2=(3\mathbb Z,+)$ where$3\mathbb Z = {3m\mid m\in \mathbb Z}$ . Note that$G_2$ is a subgroup of$G_1$ . But,$G_1$ and$G_2$ are in fact isomorphic! Consider$$\phi: Z\implies 3Z$$ $$m\mapsto 3m$$ Then:-
$\phi(m+n) = 3(m+n) = 3m+3n = \phi(m) + \phi(n), \forall m,n\in \mathbb Z\implies \phi$ is a homomorphism -
$\phi$ is 1 to 1:$\phi(m) = \phi(n) \implies 3m=3n\implies m=n,\forall m,n\in \mathbb Z$ -
$phi$ is onto:$\forall x\in 3\mathbb Z$ then$x=3m$ for$m\in Z$ so that$x=\phi(m) \implies$ is a bijection homomorphism$\implies \phi$ is an isomorphism$\implies G_1$ and$G_2$ are isomorphic
-
- To show that 2 groups
- (i) $\mathbb Z_{10}^* \not \simeq \mathbb Z_{12}^$. $$\mathbb Z_{10}^={\overline 1, \overline 3, \overline 7, \overline 9}$$ $$\mathbb Z_{12}^={\overline 1, \overline 5, \overline 7, \overline{11}}$$ $$\text{(finite groups of order 4)}$$ Note that $\mathbb Z_{10}^=\langle \overline 3\rangle$ is cyclic, where as $\mathbb Z_{12}^$ is not cyclic: $$\langle \overline 1\rangle = {\overline 1}$$ $$\langle \overline 5\rangle = {\overline 1, \overline 5}$$ $$\langle \overline 7\rangle = {\overline 1, \overline 7}$$ $$\langle \overline{11}\rangle = {\overline 1, \overline{11}}$$ $$\text{we see that }\overline k^2=1, \forall \overline k\in \mathbb Z_{12}^$$
-
Def: Let
$G_1$ ,$G_2$ be 2 groups and$\phi:G_1\implies G_2$ be a homomorphism. We define the kernel of$\phi$ as$$\ker \phi:={g\in G_1\mid \phi(a) = e_2}$$ where$e_2$ is the indentity in$G_2$ -
E.x.
-
-
$\det: (GL(n,\mathbb R),\cdot )\implies (\mathbb R^*,\cdot)$ , we have that$$\ker(det) = {A\in GL(n,\mathbb R)\mid \det A = 1}$$ $$SL(n,\mathbb R)=(\text{special linear group})$$
-
-
-
$$\phi: (\mathbb R[x],+ ) \implies (\mathbb R[x],+)$$ $$p(x)\mapsto p'(x)$$ Then, since$0$ is the identity in$(\mathbb R[x],+)$ , so that$\ker(\phi) = {p(x)\in \mathbb R[x]\mid p'(x)=0}=(\text{constant polynomial})=\mathbb R$
-
-
2016/06/03
- Some properties of homomorphisms
- Thm:
$G_1$ and$G_2$ are 2 groups and$\phi:G_1\implies G_2$ is homomorphism. Then:- (1)
$\phi(e_1) = e_2$ , where$e_1$ and$e_2$ are the identity element in$G_1$ and$G_2$ , respectively. - (2)
$\phi(a^{-1}) = (\phi(a))^{-1}, \forall a\in G_1$ - (3)
$\phi (a^n) = (\phi(a))^n, \forall a\in G_1$ - (4) Let
$a\in G_1$ . If$|a|$ is finite, then$|\phi(a)| \mid |a|$ - (5)
$\ker \phi$ is a subgroup of$G_1$ . Moreover,$\phi$ is an isomorphism iff$\ker \phi = {e_1}$
- (1)
- Proof:
- (1) Let
$e_1^2 = e_1$ $$\phi(e_1) = \phi(e_1^2) = \phi(e_1e_1) = (\phi is homor) \phi(e_1)\phi(e_1)$$ $$\implies \phi(e_1)e_2 = \phi(e_1) = \phi(e_1)\phi(e_1)$$ $$ \implies e_2 = \phi(e_1)\text{, by the cancelation property}$$ - (2) Let
$a\in G_1$ . Need to check that$\phi(a)\phi(a^{-1})=\phi(a^{-1})\phi(a)=e^2$ . But$\phi(a)\phi(a^{-1})\stackrel{\phi\text{ is homomorphism}}{=}\phi(aa^{-1}) = \phi(e_1) = (by (1)) = e^2$ . Similarly,$\phi(a^{-1})\phi(a) \implies \phi(a^-1)=(\phi(a))^-1$ - (3) Exercise
- (4) Let
$a\in G_1$ such that$|a|=n$ so that$n$ is the smallest possitive integer$a^n = e_1$ . Then,$$\phi(a^n)=\phi(e_1)=(by (1)) e_2$$ $$\stackrel{\text{by (3)}}{\Leftrightarrow} (by(3)) (\phi(a))^n = \phi(a^n) = e_2$$ $$\implies |\phi(a)| \mid n =|a|$$ - (5) Let us verify that
$\ker \phi$ is a subgroup of$G_1$ by checking that,$\forall a,b\in \ker \phi, ab\in \phi$ and$a^{-1}\in \ker \phi$ . Since$a,b\in \ker \phi = {c\in G_1\mid \phi(c) = e_2}$ , we have that$$\phi(a) = \phi(b) = e_2$$ Thus,$$\phi(ab)\stackrel{\phi\text{ is homomorphism}}{=} \phi(a)\phi(b)=e_2e_2 = e_2\implies ab\in \ker\phi$$ and$$\phi(a^{-1}) \stackrel{\text{by (2)}}{=} (\phi(a))^{-1} = (e_2)^{-1} = e_2 \implies a^{-1} \in \ker\phi$$ $\implies \ker \phi$ is a subgroup of$G_1$ . Finally, let us prove that$\phi$ is injective iff$\ker\phi = {e_1}$ . Suppose that$\phi$ is injective. Then,$\phi$ is a bijective homomorphism. By (1) we must have$\phi(e_1) = e_2$ . Also, since$\phi$ is 1:1,$e_1$ must be the only element of$G_1$ that maps to$e_2$ under$\phi$ . Therefore,$\ker \phi={c\in G_1\mid \phi(c)=e_2} = {e_1}$ . Conversely, suppose that$\ker \phi = {e_1}$ . Let us check that$\phi$ is injective. Let$a,b\in G_1$ such that$\phi(a)=\phi(b)$ . We want to show that$a=b$ . But,$$\phi(a)=\phi(b)$$ $$\implies \phi(a)\phi(b^{-1}) = \phi(b)\phi(b^{-1})\implies \phi(ab^{-1}) = \phi(bb^{-1})$$ $$\implies \phi(ab^{-1}) = \phi(bb^{-1}) = \phi(e_1) = (by (1)) = e_2$$ $$\implies ab^{-1}\in \ker \phi = {e_1}\implies ab^{-1} = e_1 \implies (ab^{-1})b = (e_1)b\implies a=b$$ - Remark: If
$|G_1| = |G_2| = n < \infty$ and$\phi:G_1\implies G_2$ is a homomorphism, then$\phi$ is isomorphism iff$\ker \phi = {e_1}$ , where$e_1$ is the identity in$G_1$ .- Proof: By (5) in the thm,
$\phi$ is injective iff$\ker\phi = {e_1}$ . Moreover since$|G_1| = |G_2| = n, \phi$ is injective iff$\phi$ is bijective.
- Proof: By (5) in the thm,
- Remark: If
- (1) Let
- Thm:
- Further properties
- Thm: Let
$G_1$ and$G_2$ be 2 groups and$\phi: G_1\implies G_2$ be a homomorphism- (6) If
$H$ is a subgroup of$G_1$ , then$\phi(H)$ is subgroup of$G_2$ - (7) If
$K$ is a subgroup of$G_2$ , then$\phi^{-1}(K)$ is subgroup of$G_1$ . - (8) Let
$G_3$ be a and$\psi: G_2\implies G_3$ . Then,$\psi\circ\phi: G_1\implies G_3$ is homomorphism
- (6) If
- Proof:
- (6) Need to check
$\phi(H)$ is closed under the operation in$G_2$ and under inverse. Let$x,y\in \phi(H)$ so that$x=\phi(a)$ and$y=\phi(b)$ for some$a,b\in H$ . Note that since$H$ is a subgroup of$G_1$ , we hav ethat$ab\in H$ and$a^{-1}\in H$ . Thus,$$xy = \phi(a)\phi(b) \stackrel{\phi\text{ is homomorphism}}{=} \phi(ab) \in \phi(H)\text{ since } ab\in H$$ and$$x^{-1} = [\phi(a)]^{-1} = (by (2)) \phi(a^{-1})\in \phi(H) \text{ since } a^{-1} \in H$$ $\implies \phi(H)$ is closed under the operation oin$G_2$ and underinverse$\implies \phi(H)$ is a subgroup of$G_2$ - (7) and (8) exercise.
- (6) Need to check
- Remark: Properties (6) and (7) tell us that if
$G_1 \simeq G_2$ , so that$\exists$ isomorphism$\phi:G_1\implies G_2$ , then there is a 1-1correspondence between subgroups in$G_1$ and subgroups in$G_2$ . I.e., For any subgroup$H$ of$G_1$ ,$\phi(H)$ is a subgroup of$G_2 \bigoplus$ any subgroup of$G_2$ is of the form$\phi(H)$ for some subgroup$H$ of$G_1$ (exercise, use inverse map). This means in particular that isomorphic groups must have the same subgroup lattice (so that if 2 groups don't have the same subgroup lattice, they cannot be isomorphic)
- Thm: Let
- Prop: Let
$G_1$ and$G_2$ be 2 groups such that$G_1 \simeq G_2$ . Then- (1)
$|G_1| = |G_2|$ - (2)
$G_1$ is abelian iff$G_2$ is abelian - (3)
$G_1$ is cyclic iff$G_2$ is cyclic
- (1)
- E.x.
- (1)
$G_1 = D_3$ and$G_2 =\mathbb Z_6$ are both finite groups of order 6. But$D_3\not \simeq \mathbb Z_6$ because$D_3$ is not abelian, but$\mathbb Z_6$ is abelian - (2) $\mathbb Z_{10}^* \not \simeq Z_{12}^$ because $\mathbb Z_{10}^$ is cyclic, but
$\mathbb Z_{12}^*$ is not cyclic
- (1)
2016/06/06
- Prop: Let
$G_1$ and$G_2$ be 2 groups such that$G_1 \simeq G_2$ . Then- (1)
$|G_1| = |G_2|$ - (2)
$G_1$ is abelian iff$G_2$ is abelian - (3)
$G_1$ is cyclic iff$G_2$ is cyclic
- (1)
- Proof of Prop:
- Since
$G_1 \simeq G_2$ , exists an isoorphism$\phi:G_1\implies G_2$ . In particular,$\phi$ is not only a homomorphism, but it is also a bijection so that$G_2 = \phi(G_1)$ . Also,$\phi^{-1}: G_2\implies G_1$ is a bijective homomorphism and$G_1 = \phi^{-1}(G_2)$ - (1) Because
$\phi$ is a bijection,$G_1$ is infinite iff$G_2$ is infinite, and$G_1$ is finite iff$G_2$ is finite. And if$G_1$ and$G_2$ are finite, they must have the same number of elements. So,$|G_1|=|G_2|$ . - (2) Suppose that
$G_1$ is abelian. Then, because$\phi$ is a homomorphism$\phi(G_1) = (G_2)$ is abelian. Similarly, if$G_2$ is abelian, then$G_1 = \phi^{-1}(G_2)$ is abelian because$\phi^{-1}$ is a homomorphism - (3) If
$G_1$ is cyclic, then$G_2 = \phi(G_1)$ is cyclic. And if$G_2$ is cyclic, then$G_1 = \phi^{-1}(G_2)$ is cyclic.
- Since
- Some facts about homomorphisms from a cyclic group to another group, is between cyclic groups.
-
Lemma: Let
$G_1$ and$G_2$ be groups, and$\phi:G_1\implies G_2$ is a homomorphism.- (1) If
$G_1$ is cyclic, then$\phi$ is complitely determined by$\phi(a)$ where$a$ is any generator of$G_1$ . In other words, if$G_1$ is a cyclic group generated by$a$ , i.e.$G_1=\langle a\rangle$ , then we need to specify$\phi(a)$ to define$\phi$ . - (2) If
$G_1$ and$G_2$ are both cyclic of order$n$ , then$\exists$ isomorphism$\phi:G_1\implies G_2$ with$\phi(a)=b$ where$a$ is any generator of$G_1$ and$b$ is any generator of$G_2$ . - Proof:
- (1) If
$G_1=\langle a\rangle$ . Then,$G_1 = {a^m\mid m\in \mathbb Z}$ so that,$\forall x \in G_1, x = a^m$ for some$m\in \mathbb Z$ , and$\phi(x) = (\phi(a))^m $ - (2) If
$G_1 = \langle a\rangle$ and$G_2 = \langle b\rangle$ . Set$\phi(a) = b$ and define$$\phi:G_1={e, a,\cdots, a^{n-1}}\implies G_2 = {e,b,\cdots,b^{n-1}}$$ $$a^m\mapsto b^m$$ Then,$\phi$ is clearly a bijection and also a homomorphism since$$\phi(a^m\cdot a^{m'}) = \phi(a^{m+m'}) = b^{m+m'} = b^m\cdot b^{m'} = \phi(a^m)\cdot \phi(a^{m'})$$ $\implies\phi$ is an isomorphism
- (1) If
- (1) If
- Prop: Let
$G = \langle a\rangle$ be a cyclic group.- (1) If
$|G| = \infty$ , then$G\simeq \mathbb Z$ - (2) If
$|G| = n$ , then$G\simeq \mathbb Z_n$ - Pf:
-
(1) The homorphism
$$\phi: G\implies \mathbb Z = \langle a\rangle$$ $$a\mapsto 1$$ is an isomorphism. Moreover,$$\psi:\mathbb Z = \langle 1 \rangle =\implies G = \langle a\rangle$$ $$1\mapsto a$$ $\leadsto \psi(m) = a^m$ because want$\psi$ to be homomorphism.-
$\psi$ is 1 to 1 Suppose that$\psi(m) = \psi(m')\Leftrightarrow a^m = a^{m'}$ . But$|a|$ is infinite because it generates G which is inifinite. So, if$a^m = a^{m'}$ , must have that$m = m'\implies \psi$ is 1:1 -
$\psi$ is onto$\forall x\in G, x=a^m$ for some$m\in \mathbb Z$ so that$x=\psi(a)\implies \psi$ is bijection homomorphism therefore$\psi$ is an isomorphism
-
-
(2) The homorphism
$$\phi: G\implies \mathbb Z_n = \langle \overline a\rangle$$ $$a\mapsto \overline 1$$ is an isomorphism.- To proof of (2) is similar.
-
- (1) If
2016/06/08
- When are 2 groups isomorphic? What are the possible homomorphisms between 2 groups?
- Use these facts:
- Thm: Let
$G_1, G_2$ be 2 groups and$G_1\simeq G_2$ . Then- (1)
$|G_1| = |G_2|$ - (2)
$G_1$ is abelian iff$G_2$ is abelian - (3)
$G_1$ is cyclic iff$G_2$ is cyclic
- (1)
- Note: If
$G_1\simeq G_2$ , then$\exists$ bijective homomorphism$\phi:G_1\implies G_2$ . Since$\phi$ is a bijection, then$G_1$ and$G_2$ must have the same cardinality:- Either they are both finite with the same number of elements
- Either they both countable, both uncountable etc.
- Also: If
$G_1$ and$G_2$ are 2 groups and$\exists$ homomorphism$\phi:G_1\implies G_2$ - (2') If
$H$ is an abelian subgroup of$G_1$ , then$\phi(H)$ is abelian subgroup of$G_2$ - (3') If
$H$ is a cyclic subgroup of$G_1$ , then$\phi(H)$ is cyclic subgroup of$G_2$
- (2') If
- Finally: If
$G_1 = \langle a\rangle$ is cycic, then$\phi: G_1\implies G_2$ is completely determined by$\phi(a)$ (because then$\phi(a^m) = (\phi(a))^m, \forall m\in \mathbb Z$ , these are true for any group$G_1$ $\phi(e_1) = e_2$ $|\phi(a)|\mid |a|$
- Thm: Let
- Ex:
-
- Consider
$G_1 = (\mathbb Z, +) and G_2 = (\mathbb R, +)$
-
$\exists$ isomorphism between$G_1$ and$G_2$ ?$G_1$ is countable, but$G_2$ is uncontable, so NO -
$\exists$ homomorphism$\phi: G_1=(\mathbb Z, +)\implies G_2=(\mathbb R, +)$ ? Yes, many! - Here,
$\mathbb Z = \langle 1\rangle$ is cyclic, so any homomorphism$\phi: \mathbb Z\implies \mathbb R$ is completely determined by$\phi(1)$ . So, get a homomorphism for any$a\in \mathbb R$ given by$\phi(1) = a$ so that$\phi(m) = \phi(a)$ so that$\phi(m) \stackrel{(\mathbb R, +)\text{ additive}}{=} \phi(a) + \phi(a) + \stackrel{m \text{ times}}{\cdots} + \phi(a)$ - e.g.
$\phi(1) = 1$ gives the homomorphism$\phi(m) = m$
- e.g.
- Consider
-
- Let
$G_1 = (\mathbb Z_4, +)$ and$G_2 = (\mathbb Z_{14}^*, \cdot)$
- Is there an isomorphism between
$G_1$ and$G_2$ ?$|G_1| = 9$ -
$|G_2| = 6$ because$G_2 = {\overline 1, \overline 3, \overline 5, \overline 9, \overline{11}, \overline{13}}$ -
$|G_1|\neq |G_2|$ so that$G_1\not \simeq G_2\implies \not \exists$ isomorphism between$G_1$ and$G_2$
- What are the possible homomorphisms
$\phi:\mathbb Z_4\implies \mathbb Z_{14}^*$ ?- Note that any such
$\phi$ must map the identity$\overline 0$ in$\mathbb Z_4$ to the identity$\overline 1$ in$\mathbb Z_{14}^*$ :$\phi(\overline 0) = \overline 1$ - Since
$\mathbb Z_4 = \langle \overline 1\rangle$ as cyclic, then$\phi$ is completely determined by$\phi(\overline 1)$ . Since$\mathbb Z_{14}^*$ has 6 elements, there are potentially 6 homomorphism.
- Note that any such
- Remark: $\mathbb Z_{14}^=\langle \overline 3\rangle$ with $\overline 3^2 = \overline 9, \overline 3^3 = \overline{13}, \overline 3^4 = \overline{11}, \overline 3^5 = \overline{15}, \overline 3^6 = \overline{1}$ since $\mathbb Z_{14}^$ is cyclic order 6, by the fundamental theorem of cyclic groups, every subgroup of $\mathbb Z_{14}^$ is cyclic and corresponds uniquely to a divisor of $|\mathbb Z_{14}^|=6$:
$$\langle \overline 1\rangle\text{ order }6/6 = 1$$ $$\langle \overline{13} \rangle = \langle \overline{3}^3\rangle\text{ order }6/3 = 2$$ $$\langle \overline{13} \rangle = \langle \overline{9} \rangle = \langle \overline{3}^2\rangle\text{ order }6/2 = 3$$ $$\langle \overline{5} \rangle = \langle \overline{3}\rangle\text{ order }6/1 = 6$$ - What are the possible homomorphisms?
-
$$\phi_0:\mathbb Z_4\implies \mathbb Z_{14}^*$$ $$\overline 1\mapsto \overline 1$$ $\implies\phi(\overline k) = \phi(k(\overline 1)) = (\phi(\overline 1))^k = \overline 1^k = \overline 1$ . This is the trivial homomorphism whose kernal is$\mathbb Z_4$ -
$$\phi_1:\mathbb Z_4\implies \mathbb Z_{14}^*$$ $$\overline 1\mapsto \overline 1$$ $\overline 1 \mapsto \overline 3$ $\overline 2 = 2(\overline 1) \mapsto (\overline 3)^2 = \overline 9$ $\overline 3 = 3(\overline 1) \mapsto (\overline 3)^3 = \overline{13}$ $\overline 0 = \overline 4 = 4(\overline 1) \mapsto (\overline 3)^4 = \overline{11}\neq \overline 1$
-
$\phi(\overline 1) = \overline 3\leadsto |\overline 1| = 4$ and$|\phi(\overline 1)| = 6$ so that$|\phi(\overline 1)| = 6 \not \mid 4 = |\overline 1|$ this cannot be a homomorphism. - This tells us that the choice of
$\phi(\overline 1)$ must be such that$$|\phi(\overline 1)| \mid |\overline 1| = 4$$ What are the orders of elements in$\mathbb Z_{14}^*$ -
$|\overline 1| = 1$ , yes -
$|\overline 3| = 6$ , no -
$|\overline 3^2| = |\overline 9| = 3$ , no -
$|\overline 3^3| = |\overline{13}| = 2$ , yes -
$|\overline 3^4| = |\overline{11}| = 3$ , yes -
$|\overline 3^5| = |\overline 5| = 6$ , no
-
- The only other possible homomorphism is:
$\cdots$
-
- What are the possible homomorphisms?
- Let
-
- In general, given 2 groups
$G_1$ and$G_2$ , if$G_1 = \langle a\rangle$ is cyclic and one wants to determine all the possible homomorphism$\phi:G_1\implies G_2$ , one has to determine the possible images of the generator$a$ of$G_1$ . In particular, if$|G_1|<\infty$ , then must have$$|\phi(a)| \mid |a|$$ - Ex. Consider
$G_1 = (\mathbb Z_{10},+), G_2 = (\mathbb Z_6, +)$ Both are cyclic,$|\mathbb Z_{10}| = 10$ and$\mathbb Z_{10} = \langle \overline 1\rangle$ ,$|\mathbb Z_{6}| = 6$ and$\mathbb Z_{10} = \langle \overline 1\rangle$ - Isomorphism? No, because
$|\mathbb Z_{10}|\neq |\mathbb Z_{6}|$ -
$\exists$ subjective homomorphism$\phi:\mathbb Z_{10}\implies \mathbb Z_{6}$ ?
- Isomorphism? No, because
- Ex. Consider
2016/06/10
... (missing)
- Thm: (Cayley) every finite group is isomorphic to a subgroup of a permutation group
$S_n, n>1$
... (missing)
- e.g.
-
$\sigma:\mathbb Z_{10}\implies \mathbb Z_6$
- Isomorphism? No.
- Is there a subjective homomorphism? No
- How many homomorphism
$\sigma:\mathbb Z_{10}\implies \mathbb Z_6$ exist? 2 (The trivial homomorphism $\sigma: \mathbb Z_{10}=\langle \overline \rangle\implies \mathbb Z_6, \overline 1\mapsto \overline 0 = $ (identity in$(\mathbb Z_6, +)$ and another.
-
- Recall that a permutation of degree
$n$ is a bijection$$\sigma:{1, \cdots, n}\implies {1, \cdots, n}$$ Also,$S_n = { \text{all permutations of degree } n}$ is a group under composition.- Notation: Since the group operation is composition, we will denote it by multiplication:
$$\sigma \tau:= \sigma\circ \tau, \forall \sigma, \tau\in S_n$$ -
$\oplus S_n$ is a finite group with$|S_n| = n!$ -
$\oplus S_n$ is NOT abelian if$n\geq 3$ -
$S_2={\sigma:{1,2}\implies {1,2}\mid \sigma \text{ is bijection}}$ and$|S_2| = 2!$ $$\sigma_0:\sigma:{1,2}\implies {1,2}$$ $$1\mapsto 1$$ $$2\mapsto 2$$ where$\sigma_0$ is the identity in$S_2$ $$\sigma_1:\sigma:{1,2}\implies {1,2}$$ $$1\mapsto 2$$ $$2\mapsto 1$$ - Note:
-
$\sigma_0$ is the identity in$S_2$ and$\sigma_1\sigma_1 = \sigma_0\implies \sigma_1^{-1} = \sigma_1$ -
$S_2$ is abelian
-
- Note:
-
$S_3={\sigma:{1,2,3}\implies {1,2,3}\mid \sigma \text{ is bijection}}$ and$|S_2| = 3! = 6$ $$\sigma_0 = \text{identity}, i\mapsto i$$ $$\sigma_1: 1\mapsto 2, 2\mapsto 1, 3\mapsto 3 \leadsto (1,2)$$ $$\sigma_2: 1\mapsto 3, 2\mapsto 2, 3\mapsto 1 \leadsto (1,3)$$ $$\sigma_3: 1\mapsto 1, 2\mapsto 3, 3\mapsto 2 \leadsto (2,3)$$ $$\sigma_4: 1\mapsto 2, 2\mapsto 3, 3\mapsto 1 \leadsto (1,2,3)$$ $$\sigma_1: 1\mapsto 3, 2\mapsto 1, 3\mapsto 2 \leadsto (1,3,2)$$
-
- Notation: Since the group operation is composition, we will denote it by multiplication:
- Cycle notation:
- $S_3: \sigma_4 = \begin{bmatrix}1&2&3\2&3&1\end{bmatrix} \begin{matrix}i\\sigma(i)\end{matrix},\sigma_3 = \begin{bmatrix}1&2&3\1&3&2\end{bmatrix}$
- $S_6: \sigma_4 = \begin{bmatrix}1&2&3&4&5&6\3&2&1&6&4&5\end{bmatrix}$
- An expression of the form
$(a_1, \cdots, a_m)$ with$a_i\neq a_j$ if$i\neq j$ is called a cycle of length$m$ or an$m$ -cycle. Two cycles$(a_1, \cdots, a_m)$ and$(b_1, \cdots, b_m)$ are called disjoint if$a_i\neq b_j$ for all$i,j$ - e.g.
$(1,3)$ and$(4,6,5)$ are disjoint,$(1,2)$ and$(1,3)$ are not disjoint
- e.g.
- Some facts:
- Prop: Let
$\sigma, \tau\in S_n$ with$n>1$ .- (1)
$\sigma$ is a cycle or the product of disjoint cycles. - (2) If
$\sigma$ and$\tau$ are disjoint cycles, then$\sigma \tau = \tau\sigma$ - (3)
$\sigma$ is a product of 2-cycles
- (1)
- Ex:
$S_3 = {(1)(2)(3), (1,2), (1,3), (2,3), (1,2,3), (1,3,2)}$ - (1) identity
$= (1)(2)(3)$ is a product of disjoint 1-cycles; the rest of the elements are cycles. - (3) identity
$= (1,2)(1,2)$ product of two 2-cycles.$(1,2,3)= (1,3)(1,2)$ $(1,3,2)= (1,2)(1,3)$
- (1) identity
- Pf: (2)
- Let
$\sigma = (a_1, \cdots, a_m)$ and$\tau = (b_1, \cdots, b_{m'})$ be disjoint cycles so that$a_i\neq b_j, \forall i, j$ - $\implies \sigma $ leaves
$b_1, \cdots, b_{m'}$ fixed since$b_1, \cdots, b_{m'}$ does not appear in the expression of$\sigma$ -
$\implies \tau$ leaves$a_1, \cdots, a_m$ fixed since$a_1, \cdots, a_m$ does not appear in the expression of$\tau$ -
$\implies$ The remaining integers ${c_1, \cdots, c_r} = {1,\cdots, n}\setminus {a_1, \cdots, a_m,b_1, \cdots, b_{m'}} $ are fixed by both$\sigma$ and$\tau$ - Need to check that
$\sigma \tau(a_i)=\tau\sigma(a_i), \forall i$ ,$\sigma \tau(b_j)=\tau\sigma(b_j), \forall j$ ,$\sigma \tau(c_k)=\tau\sigma(c_k), \forall k$ - So,
$\forall i, \sigma \tau(a_i)= \sigma (\tau(a_i))= \sigma(a_{i}) = a_{i+1}=\tau (a_{i+1}) = \tau(\sigma(a_i))=\tau\sigma(a_i)$ - One proves the others similarly (Exercise)
- Let
- Pf: (3)
- By (1), anh permutation is a product of disjoint cycles, so it is enough to prove that any cycle is a product of 2-cycles. Let
$\sigma=(a_1,\cdots, a_m)$ be a cycle. Then$\sigma=(a_1, a_m)(a_1, a_{m-1})\cdots (a_1, a_3)(a_1, a_2)$
- By (1), anh permutation is a product of disjoint cycles, so it is enough to prove that any cycle is a product of 2-cycles. Let
- Prop: Let
- midterm up till today.
2016/06/13
- Last class:
- Prop: Let
$\sigma, \tau\in S_n$ with$n>1$ - (1)
$\sigma$ is a cycle or the product of the product of disjoint cycles. - (2) If
$\sigma$ and$\tau$ are disjoint cycles, then$\sigma\tau=\tau\sigma$ - (3)
$\sigma$ is a product of 2-cycles. - Note:
$\sigma\tau=\sigma\cdot\tau$ where$\sigma,\tau:{1,\cdots,n}\implies{1,\cdots,n}$
- (1)
- Prop: Let
- Note:
-
- The decomposition in the proof of (3) is NOT unique.
- e.g. In
$S_3$ , $(1;2;3) = (1;3)(1;2) = (1;2)(2;3)$a - Nonetheless, we will see that any decomposition of
$\sigma$ as product of 2-cycles will either always have an even nb of 2-cycles or always have an odd number of 2-cycles
-
- Some authors call 2-cycles
$(a;b)$ transpositions. Note that any 2-cycle is its even inverse.
- Some authors call 2-cycles
- Notation: Let us denote the
$\epsilon$ , the identity permutation in$S_n, n>1$ which is the identity element of the group
-
-
Order of a permuttation: Let
$\sigma\in S_n, n>1$ - If
$\sigma = (a_1\cdots a_m)$ is a cycle, then$|\sigma|=m=(\text{length of }\sigma)$ (proof exercise) - If
$\sigma$ is not a cycle, then its order can be computed in terms of its decomposition as a product of disjoint cycles:
- If
- Thm (Ruffini): Let
$\sigma\in S_n, n>1$ . Then,$|\sigma|$ is equal to the least common multiple of the lengths of cycles appearing in its decomposition as a product of disjoint cycles.- Pf: If
$\sigma$ is a cycle, then$|\sigma| = (\text{length }r)$ , so we are done. Otherwise,$\sigma$ can be written as a product of disjoint cycles. Let us assume that$\sigma = \sigma_1\sigma_2$ with$\sigma_1, \sigma_2$ disjoint cycles (the proof for a product of more than 2 disjoint cycles is similar) Suppose that$|\sigma_1| = m_1, |\sigma_2|=m_2$ . Set$k = lcm(m_1, m_2)$ since$m_1, m_2\mid k$ and$\sigma_1^{m_1}=\sigma_2^{m_2}=\epsilon$ , we have that$$\sigma_1^k = \sigma_2^k = \epsilon$$ Moreover, since$\sigma_1$ and$\sigma_2$ are disjoint cycles, $\sigma_1\sigma_2 = \sigma_2\sigma_1 $ and so$\sigma^k = (\sigma_1\sigma_2)^k = \sigma_1^k\sigma_2^k = \epsilon$ Therefore, if$t=|\sigma|$ , we must ahve that$t\mid k$ . Let us show that$k\mid t$ , which give us that$|\sigma|=t=k=lcm(m_1, m_2)$ . It is enough to show that$m_1, m_2\mid t$ , which will force$k = lcm(m_1, m_2)\mid t$ . We do this by checking that$\sigma_1^k = \sigma_2^k = \epsilon$ Now,$t = |\sigma|$ so that$\sigma^t = \epsilon$ . But,$$\sigma^t = (\sigma_1\sigma_2)^t = \sigma_1^t\sigma_2^t$$ $\implies \sigma_1^t\sigma_2^t = \epsilon\implies to\sigma_1^t=(\sigma_2^{-1})^t$ But,$\sigma_1$ and$\sigma_2$ are disjoint cycles so that they don't contain common integers. The same is the of any power of$\sigma_1$ and$\sigma_2$ . Thus, the onlly way that we can have$\sigma_1^t=(\sigma_2^{-1})^t$ is if$$\sigma_1^t=(\sigma_2^{-1})^t=\epsilon$$ $\Leftrightarrow \sigma_1^t=\sigma_2^t = \epsilon\implies m_1 = |\sigma_1|\mid t$ and$m_2 = |\sigma_2|\mid t$ - Ex.
-
- $$\sigma=\begin{bmatrix}1&2&3&4&5&6&7&8 \ 2&1&3&5&4&7&6&8\end{bmatrix}$$
$$\sigma = (1;2)(3)(4;5)(6;7)(8)=(1;2)(4;5)(6;7)$$ $\leadsto$ product of disjoint cycles, each of length 2$\implies |\sigma| = lcm(2,2,2)=2
- Note:
$\sigma$ is an odd permutation because it is the product of odd number of 2-cycles)
- $$\sigma=\begin{bmatrix}1&2&3&4&5&6&7&8 \ 2&1&3&5&4&7&6&8\end{bmatrix}$$
-
- $$\tau=\begin{bmatrix}1&2&3&4&5&6&7&8 \ 1&3&8&7&6&5&2&4\end{bmatrix}$$
$$\tau= (2;3;8;4;7)(5;6)\leadsto |\tau| = lcm(5,2)=10$$ $$(2;7)(2;4)(2;8)(2;3)(5;6)\implies \text{ odd}$$
- $$\tau=\begin{bmatrix}1&2&3&4&5&6&7&8 \ 1&3&8&7&6&5&2&4\end{bmatrix}$$
-
- Pf: If
2016/06/15
- Thm: If
$\sigma\in S_n, n>1$ , can be expressed as a product of an even number of 2-cycles, then any decomposition of$\sigma$ into products of 2-cycles must be an even number of 2-cycles. i.e. if$\sigma = \beta_1\cdots\beta_s=\gamma_1\cdots\gamma_s$ with every$\beta_i$ and every$\gamma_j$ a 2-cycle, then$r$ and$s$ are either both even or both odd.- Pf: Since
$\sigma = \beta_1\cdots\beta_s=\gamma_1\cdots\gamma_s\implies (\beta_1\cdots\beta_s(\gamma_1\cdots\gamma_s)^{-1} = \epsilon (=\text{identity permutation}\implies \beta_1\cdots\beta_(\gamma_1^{-1}\cdots\gamma_s^{-1}=\epsilon\implies \beta_1\cdots\beta_s\gamma_s\cdots\gamma_1=\epsilon$ (since$r^{-1}_j = r_j\forall j$ , because they are 2-cycle) If can prove that a product of 2-cycles that is equal to$\epsilon$ ust be a pruduct of an even number of 2-cycles, this will force$r+s$ to even, implying that$r$ and$s$ are either both even or both odd. The only thing left to prove is that if$\alpha_1, \cdots, \alpha_l$ are 2-cycles such that$\alpha_1\cdots\alpha_l=\epsilon$ , then$l$ is even. Let us do it by induction on$l$ -
$l=1$ : then$\alpha_1\neq \epsilon$ since an 2-cycle must permute 2 elements in${1,\cdots, n}$ -
$l=2$ : then$\alpha_1\alpha_2 = \epsilon$ with$l=2$ which is even. - Assume that it is true for
$l>2$ . Let us prove it for$l+1$ . We have$$\alpha_1\cdots\alpha_l\alpha_{l+1}=\epsilon$$ There are 4 possibilities for$\alpha_l\alpha_{l+1}$ :$$\alpha_l\alpha_{l+1} = (a b)(a b)=\epsilon$$ $$\alpha_l\alpha_{l+1} = (a c)(a b)=(a b)(b c)$$ $$\alpha_l\alpha_{l+1} = (b c)(a b)=(a c)(c b)$$ $$\alpha_l\alpha_{l+1} = (c d)(a b)=(a b)(c d)$$ $$\text{where }c,d\neq a,b$$ For the first case, remove$\alpha_l\alpha_{l+1}$ from product. For the other cases, replace$\alpha_l\alpha_{l+1}$ in the pruduct by expression in the right hand side. $$ $$ In the first case, we obtain $\epsilon=\alpha_1\cdots\alpha_l\alpha_{l+1}\implies l-1 $ is even by the induction hypothesis$\implies l+1$ is even. In the other cases, the integer "$a$" no longer appears in the expression of the last 2-cycle. One can repeat the process with$\alpha_{l-1}\alpha_l$ so that "$a$" no longer appears in$\alpha_l$ , but rather in$\alpha_{l-1}$ . We obtain:$$\alpha_1\cdots\alpha_{l-1}\text{(with "a")}\cdot\alpha_l\alpha_{l+1}\text{(no "a")}=\epsilon$$ The process must eventually give us that$\alpha_{1}\cdots\alpha_{l-1}=\epsilon$ , which will imply that$l-1$ is even and therefore$l+1$ is also even.
-
- Pf: Since
- Def: Let
$\alpha\in S_n, n>1$ . If$\sigma$ can be expressed as an even number of 2-cycles, then$\sigma$ is called even. Otherwise, it is called odd.- Note:
-
- Since any decomposition of
$\sigma$ as a product of 2-cycles either always has an even number of 2-cycles or always an odd number of 2-cycles, then notion of even or odd permutation is independent of the decomposition of$\sigma$ as a product of 2-cycles, and is thus well-defined.
- Since any decomposition of
-
- The product of 2 odd permutation is even so that the set of all odd permutations is not closed under composition
$\implies$ teh set of all odd permutations is not a subgroup of$S_n$ . Nonetheless, we have:
- The product of 2 odd permutation is even so that the set of all odd permutations is not closed under composition
-
- Note:
- Thm: The set of even permutations of
$S_n$ is a subgroup of$S_n, n>1$ .- Pf: Exercise.
- Def: The set of all even permutations in
$S_n,n>1$ , is called the alternating group of degree$n$ and is denoted$A_n$ - Prop:
$|A_n| = \frac{n!}{2}$ - Pf: We know that
$|S_n|=n!$ . Also, the sets of even and odd permutaitons are disjoint and contain the same number of elements. Since we have the following bijection:$$A_n=(\text{even permutation});;;\text{odd permutation}$$ $$\sigma\mapsto (1,2)\sigma$$ $$(1,2)\tau \leftarrow!\shortmid \tau$$
- Pf: We know that
- Ex: $$\sigma=\begin{bmatrix}1&2&3&4&5&6 \ 2&1&5&4&6&3\end{bmatrix}\in S_6$$
$\leadsto \sigma =(1,2)(3,5,6)=(1,2)(3,6)(3,5)\leadsto$ odd - Def: Let
$A$ be a set. A permutation of$A$ is a bijection$\mathbb{F}:A\implies A$ - Note: The set of all permutations of
$A$ is a group under compisition
- Note: The set of all permutations of
- Thm (Cayley): Every group is isomorphic to a group of permutations.
- Pf: Let
$G$ be a group, which may have an infinite order. We have to find a group of permutations$\overline G$ such that$\overline G\simeq G$ . Let$g\in G$ , set$$T_g: G\implies G$$ $$x\mapsto gx\text{ (i.e. multiplication on the left by g)}$$ Note that$T_g$ is a bijection of$G$ and therefore a permutation of$G$ -
$T_g$ is 1:1:$T_g(x) = T_g(y)\implies gx=gy\implies(by cancellation property) x=y$ -
$T_g$ is onto:$\forall y\in G, y=g(g^{-1}y) = T_g(g^{-1}y)$
-
- But,
$T_g$ is not a homomorphism if$g\neq e$ since$T_g(xy) = g(xy)\neq (gx)(gy) = T_g(x)T_g(y)$ - Set
$\overline G={T_g, g\in G}\leadsto \overline G\simeq G$
- Pf: Let
2016/06/20
... (missing)
2016/06/22
- Review from last lecture:
- Theorem (Cayley): Every group is isomorphic to a group of permutations.
- More precisely, given a group
$G$ ,$G\simeq \overline G$ where$$\overline G:={T_g:G\to G, x\mapsto gx\mid \forall g\in G}$$ $$=(\text{group of left representations of }G)$$
- E.g.
- ... (missing)
-
- Rotation in
$\mathbb R^2$ :$G={R_\theta\mid \theta\in \mathbb R}\simeq \mathbb R$ ;$\overline G = {T_{\theta_0}(R_\theta) = R_{\theta_0+\theta}\mid \theta_0\in \mathbb R}$
- Rotation in
-
- Rotations of equilateral triangle in
$\mathbb R^2$ :$G={Id, R_{\frac{2\pi}{3}},R_{\frac{4\pi}{3}}}$ subgroup of$D_3$ . Identification with$A_3=(\text{even permutations in }S_3)$ :$$Id\leftrightarrow \epsilon$$ $$R_{\frac{2\pi}{3}}\leftrightarrow (123) = (13)(12)$$ $$R_{\frac{4\pi}{3}}\leftrightarrow (132) = (12)(13)$$$\overline G = {T_{\theta_0}(R_\theta) = R_{\theta_0}\cdot R_\theta = R_{\theta_0+\theta}\mid \theta_0=0, \frac{2\pi}{3}, \frac{4\pi}{3}}$
- Rotations of equilateral triangle in
-
- Rotations of the regular tetrahedron in
$\mathbb R^3$ can be identified with$A_4 = (\text{even permutation in }S_4)$ , which has$\frac{4!}{2}=12$ elements (see Gallian, Ch5.1, Ex.8, for details)
- Rotations of the regular tetrahedron in
- More generally, one can consider representations of the group
$G$ . Let$V$ be a vector space (e.g.$V=\mathbb R^n$ ) and let$GL(V)$ be the set of invertible linear transformation$L:V\implies V$ (e.g. $GL(V)\simeq GL(n,\mathbb R)$). Note that$GL(V)$ is a group onder composition. A representation of$G$ is homomorphism$$\zeta: G\implies GL(V)$$ - E.g. Rotations about the origin in
$\mathbb R^2:{\mathbb R_\theta\mid \theta\in \mathbb R}\simeq(\mathbb R, +)$ $$\zeta:G\implies GL(\mathbb R^3)=GL(2,\mathbb R)$$ $$R_\theta \leadsto \begin{pmatrix}cos(\theta)&sin(\theta) \ -sin(\theta)&cos(\theta)\end{pmatrix}$$- Pf Need to check that
$\zeta$ is a homomorphism. Let$R_{\theta_1}, R_{\theta_2}\in G$ , then$R_{\theta_1}\circ R_{\theta_2} = R_{\theta_{1+2}}$ and$$\zeta(R_{\theta_1}\circ R_{\theta_2}) = g(R_{\theta_1}) + g(R_{\theta_2})$$
- Pf Need to check that
- E.g. Rotations about the origin in
- Def: An isomorphism from from
$G$ to itself is called an automorphism of$G$ - Ex:
-
-
$\phi:(\mathbb C,+)\implies (\mathbb C,+), z\mapsto az$ for some fixed$0\neq a\in \mathbb C$ is automorphism of$(\mathbb C,+)$ , or$\phi:(\mathbb C,+)\implies (\mathbb C,+), z\mapsto \overline z$ is automorphism of$(\mathbb C,+)$
-
-
-
$\phi:(\mathbb R^n,+)\implies (\mathbb R^n,+), \vec v \mapsto A\vec v$ for some fixed A\in GL(n,R) is an automorphism of (Rn,+)
-
-
- Not every bijection
$\phi: G\implies G$ is automorphism
- e.g.
$T_g:G\implies G, x\mapsto gx$ for fixed$g\in G$ is a bijection but NOT an automorphism if$g\neq e$ (since$T_g$ is not a homomorphism) in general - However, the following map is always an automorphism
$$\phi_g:g\implies G$$ $$x\mapsto gx g^{-1}, \forall \text{ fixed } g\in G$$ - Pf:
-
homomorphism:
$\forall x, y $ , we have:$$\phi_g(xy) = g(xy)g^{-1} = gx(g^{-1}g)yg^{-1}=\phi_g(x)\phi_g(y)$$ -
1:1:
$\forall x,y\in G$ , if$\phi_g(x)=\phi_g(y)$ , then$gxg^{-1}=gyg^{-1}\implies xg^{-1}=yg^{-1}\implies x=y$ (by cancellation property applied twice) -
onto:
$\forall y \in G$ ,$y=g(g^{-1}yg)^{-1}=\phi_g(g^{-1}yg)$ with$g^{-1}yg\in G\implies \phi_g$ is a bijective homomorphism $\implies \phi_g $ is an isomorphism of$G$ to itself$\implies \phi_g$ is an automorphism
-
homomorphism:
- Pf:
- Not every bijection
-
- Def: Let
$G$ be a group and$g\in G$ . The function defined by$\phi_g(x) = gxg^{-1}$ for all$x\in G$ is called the inner automorphism of$G$ induced by$g$ - Notation:
$Aut(G):={\text{set of all automorphisms of } G}$ and$Inn(G):={\text{set of all inner automorphisms of } G}$ - Note that
$Inn(G)\subset Aut(G)$
- Note that
- Thm:
$Aut(G)$ and$Inn(G)$ are groups under composition (with identity the identity map Id$G\implies G, x\mapsto x$ )- Pf: exercise
- Note:
-
-
$Inn(G)$ is a subgroup of$Aut(G)$
-
-
- If
$G$ and$G'$ are 2 groups such that$G\simeq G'$ , then$Aut(G)\simeq Aut(G)$ and$Inn(G)\simeq Inn(G')$ (proof as exercise) This means in particular that if$Aut(G)\not \simeq Aut(G')$ or$Inn(G)\not \simeq Inn(G')$ , then$G\not \simeq G'$ .
- If
-
- If
$G$ is abelian,$\forall g\in G$ ,$\phi_g=Id$ because$$\phi_g=gx g^{-1} = gg^{-1}x=ex=x,\forall x\in G$$ $\implies Inn(G)={Id}$ . So if$Inn(G)\not \simeq {Id}$ , then$G$ is not abelian.
- If
-
- Ex.
-
-
$G=(\mathbb Z, +)$ ,$Aut(\mathbb Z)={\pn Id}$ ,$Int(\mathbb Z) = {Id}$
-
-
2016/06/27
... (missing)
- Theorem (Lagrange): If
$G$ is a finite group and$H$ is a subgroup of$G$ , then$|H|\mid|G|$ - Def: Let
$G$ be a group,$H$ is a subgroup of$G$ and$a\in G$ $aH:={ah\mid h\in H} = (\text{left cost containing }a)$ $Ha:={ha\mid h\in H} = (\text{right cost containing }a)$ $a = (\text{coset representative of } aH\text{ (or } Ha\text{)})$ $|aH| = \text{number of elements in coset} = |Ha|$
- E.x.
-
- ... (missing)
$\implies 3+2m_0$ is a representative of$3+H, \forall m_0\in \mathbb Z$ . Also,$H+3 = {2m+3\mid m\in \mathbb Z}$ $= (\text{right coset containing }3)$ $\stackrel{ \text{since }G\text{ (and }H\text{) are abelian}}{=}3+H$
- ... (missing)
-
-
$G=\mathbb Z_6={\overline 0, \overline 1, \overline 2, \overline 3, \overline 4, \overline 5}, H=\langle \overline 2\rangle={\overline 0, \overline 2, \overline 4}, a=\overline 5$ . Then, since$G$ is abelian$$\overline 5 + \mathbb Z_6 = \mathbb Z_6 + \overline 5 = {\overline 5 + \overline 0, \overline 5 + \overline 2, \overline 5 + \overline 4} = {\overline 1, \overline 3, \overline 5}$$
- Rmk:
$\overline 5 + \mathbb Z_6$ is not a subgroup of$G$ (since$\overline 0\not \in \overline 5+\mathbb Z_6)$ - Important: cosets may not be subgroups (even though
$H$ is a subgroup)!
-
-
-
$G=S_3$ (which is not abelian),$H=\langle(1, 2)\rangle={\epsilon, (1,2)}$ . Let us find all the left coset of$H$ :
$a=\epsilon: \epsilon H = H $ $a = (1,2): (1,2)H={(1,2)\epsilon, (1, 2)(1, 2)}= {(1, 2), \epsilon} = H$ $a = (1, 3): (1, 3)H={(1, 3)\epsilon, (1, 3)(1, 2)}={(1, 3), (1, 2, 3)}$ $a = (2, 3): (2, 3)H = {(2, 3), (1, 2, 3)}$ $a = (1, 2, 3): (1, 2, 3)H = {(1, 2, 3),(1, 3)} = (1, 3)H$ $a = (1, 3, 2): (1, 3, 2)H = {(2, 3), (1, 3, 2)} = (23, )H$ - So,
$H$ has only 3 left costs:$(1, 3)H, (2, 3)H$ . - Note: $\frac{|G|}{|H|} = \frac{6}{2} = 3 = $ (# of left cosets of
$G$ ) -
$\leadsto$ This is always true and follows from Lagrange's Thm. - The same is true for right cosets (check with
$S_3 and H=\langle(1, 2)\rangle$
-
-
- Lemma: (Properties of cosets) Let
$G$ be a group, and H be a subgroup of$G$ ,$a,b\in G$ -
$a\in aH$
-
$aH = H \Leftrightarrow a\in H$
-
-
$aH = bH$ or$aH\cap bH = \emptyset$
-
-
$aH = bH \Leftrightarrow a^{-1}b\in H$
-
$|aH| = |bH| = |H|$
-
$aH = Ha \Leftarrow H = aHa^{-1}$
-
-
$aH$ is a subgroup$\Leftrightarrow a\in H$
-
- Note: The same properties hold for right cosets.
-
- Proof:
-
-
$e\in H$ since$H$ is a subgroup of$G \implies a=ae\in aH$
-
-
- suppose that
$aH=H$ . By 1,$a\in aH = H\implies a\in H$ . Conversely, suppose that$a\in H$ . This means in particular that$a^{-1}\in H$ because$H$ is a subgroup of$G$ (and thus closed under inverses)
-
$aH\subset H$ : Since$a\in H$ ,$\forall h\in H, ah\in H,$ then$aH={ah\mid h\in H}\subset H$ . -
$H\in aH$ :$\forall h\in H$ . Then$$h=a(a^{-1}h)\in aH$$ because$a^{-1}H\in H$ since$a^{-1}, h\in H$ and$H$ is a subgroup.
- suppose that
-
- If
$aH=bH$ , then we are done. Suppose, otherwise, that$aH\neq bH$ , and let us show that$aH\cap bH=\emptyset$ . Assume instead that$aH\in bH\neq \emptyset$ . Then$\exists g\in G$ such that$g\in aH \cap bH\implies g=ah=bh'$ for some$h, h' \in H$ $$\implies ah=bh'$$ $$\implies a=bh'h^{-1}\in bH$$ $$\implies aH\subset bH \text{ because } ah''=(bh'h^{-1})h''=b(h'h^{-1}h'')$$ since$h, h', h'' \in H$ . So,$ah''\in bH$ . Similarly, since$b=ah(h')^{-1}$ , then$bH\subset aH$ . Thus,$aH =bH$ , contradicting the fact that$aH\neq bH$ . Hence,$aH\cap bH=\emptyset$
- If
-
- Exercise
-
-
$\exists$ bijection:$f: H\implies aH, h\mapsto aH$
- 1:1:
$f(h) = f(h') \implies ah=ah'\implies h=h'$ (by cancellation rule) - onto:
$\forall ah\in |aH|, ah=f(h)$ -
$\implies f$ is a bijection$\implies |H|=|aH|$
-
-
- Exercise
-
- Exercise
-
- Thm: (Lagrange) Let
$G$ be a finite group, and$H$ be a subgroup of$G$ . Then,$|H| \mid |G|$ - Proof: Let
$a_1H, \cdots, a_rH$ be the distince left costs of$H$ in$G$ . Therefore,$\forall a\in G, aH = a_iH$ for some$1\leq i\leq r \implies a\in aH =a_iH$ (by (1) in lemma)$\implies$ any element$a\in G$ is contained in one of the left cosets$a_1H, \cdots, a_rH \implies G=a_1H\cup \cdots\cup a_rH$ . But by (3) in lemma,$a_iH\cap a_jH=\emptyset$ if$i\neq j$ since$a_iH = a_jH$ . So,$G$ is the disjoint union of the left cosets$a_1H, \cdots, a_rH \implies |G| = |a_1H|+ \cdots+ |a_rH| =\text{ (lemma (5)) } r|H| \implies |G| = r|H| \implies |H|\mid |G|$
- Proof: Let
2016/06/29
- ...(missing)
- Corraries: Let
$G$ be a finite group and$H$ be a subgroup of$G$ . then:-
$|G:H| = \frac{|G|}{|H|}$
-
-
$\forall a\in G, |a|\mid |G|$ . Moreover,$a^{|G|}=e$
-
-
- A group of prime order is cyclic.
-
- Proof:
-
- Done
-
-
$\forall a\in G, |a| = |\langle a\rangle |$ with$\langle a\rangle$ a subgroup of$G$ . So, by Lagrange's Theorem... (missing)
-
-
- ... (missing)
- Remark: Lagrange's Thm tells us that if
$G$ is a finite group, then- If
$H$ is any subgroup, then$|H|\mid |G| $ - If
$a\in G$ , then$|a|\mid |G|$
- If
- Remark: We have seen that if
$G$ is cyclic, then$\forall$ positive divisor$k$ of$|G|$ :-
$\exists$ subgroup$G$ of$G$ such that$|H|=k$ -
$\exists$ an alement$a\in G$ such that$|a| = k$ - (This is the content of the Fund Thm of Cyclic groups)
-
- Remark: However, this is not true in general. That is,
$\exists$ finite groups$G$ such that for some positvie divisors$k$ of$|G|$ ,$\not \exists$ subgroup of order$k$ or$\not \exists$ an element of order$k$ .- e.g.
$G=A_4=$ (even permutations on {1,2,3,4})$\mapsto |G|=\frac{4!}{2}=12\implies$ positive divisors of$12: k=1,2,3,4,6,12$ BUT,$\not \exists$ element in$A_4$ of order$4,6,12$ ,$\not \exsits$ a subgroup of$A_4$ of order$6$ . Nonetheless,$A_4$ has$1$ subgroup of order$1$ ,$3$ subgroups of order$2$ ,$8$ subgroups of order$3$ ,$1$ subgroups of order$4$ ,$1$ subgroups of order$12$ , that is,$H=A_4$ - Proof:
$A_4={\text{even permutations in }S_4}\leadsto$ every element in$A_4$ is a product of an even number of 2-cycles.$\epsilon$ $(12)(34)$ $(13)(24)$ $(14)(23)$
- All above are disjoint and has order 2
-
$(12)(13),(13)(12),(12)(14),(14)(12),(13)(14),(14)(13),(23)(24),(24,23)\implies$ subgroup of order$3$ - Subgroup of order 1:
${\epsilon}$ - Subgroup of order 2:
$\langle(12)(34)\rangle,\langle(13)(24)\rangle,\langle(14)(23)\rangle$ (because the subgroup can contain only one element other than$\epsilon$ , forcing that element to be order$2$ ) - Subgroup fo order 3:
$\langle(\sigma)\rangle$ with$\sigma\in A_4$ of order 3 (There are no other possiblilies because$3$ is prime and so any subgroup of order$3$ must be cyclic and thus generated by an element of order$3$ ) - Subgroups of order 4:
${\epsilon,(12)(34),(13)(24), (14)(23)}$ - [This clime, if
$H$ is a subgroup of$A_4$ of order$4$ , then it can only contain element of order$1,2,4$ (because$1,2,4$ are the only positive divisors of$4$ ). So, it can only contain$\epsilon,(12)(34),(13)(24), (14)(23)$ . Also, it must contain more than$\epsilon$ and just are of$(12)(34),(13)(24), (14)(23)$ , otherwise it would be cyclic of order$2$ . Finally, if it contains$2$ of the permutations$(12)(34),(13)(24), (14)(23)$ , it must contain the third (because the third is the product of the other 2)] - Subgroups of order 12:
$A_4$ - Let us now prove that
$\not \exists$ subgroup of order 6. We do it by contradiction. Suppose instead that$\exists$ subgroup$H$ of order 6. Let$\sigma\in A_4$ be order$3$ . Consider the left cosets:$H = \epsilon H=\sigma H=\sigma^2 H$ . Note taht, be Lagrange's Thm, the number of left cosets of$H$ is$|A_4:H|=\frac{|A_4|}{|H|}=\frac{12}{6}=2\implies \exists$ at most$2$ distinct left cosets amongst$H, \sigma H, \sigma^2H$ So$H=\sigma H\implies \sigma\in H$ , or$H=\sigma^2H\implies \sigma^2\in H\implies (\sigma^2)^{-1}\in H$ (Since$H$ is a subgroup) but$(\sigma^2)^{-1}=\sigma$ since$\sigma^3=\epsilon\implies \sigma\in H$ , or$\sigma H = \sigma^2 H\implies H=\sigma H\implies \sigma \in H$ Thus,$\sigma \in H,\forall \sigma \in A_4$ of order$3$ . But$\exists 8$ elements of order$3$ in$A_4$ and$|H|=6$ , leading to a countradiction.
- Proof:
- e.g.
-
2016/07/04
- Review:
- (Lagrange) Let
$G$ be a finite group and$H$ is a subgroup of$G$ , then$|H|\mid|G|$ . - Cor:
-
-
$|G:H| =$ (# of disjoint left cosets of H) = |G|/|H|
-
-
-
$\forall a\in G, |a|\mid|G|$ . Moreover,$a^{|G|}=e$
-
-
- A group of prime order is cyclic.
-
- (Lagrange) Let
- Thm (Fermat's Little Theorem): Let
$m\in \mathbb Z$ . The, for any prime number$p$ ,$$m^p\mod p = m\mod p$$ - Proof: Using the division algorithm, we can write
$m=sp+r$ for some$s\in \mathbb Z$ and$0\le r<p$ . So,$m\mod p=r\mod p$ and$$m^p\mod p = r^p \mod p$$ So it is enough to prove that$$r^p \mod p = r^p\mod p$$ for$0\le r<p$ . If$r=0$ , the certainly$0^p\mod p = 0 \mod p$ . And if$0<r<p$ , then $F=r\mod p\in \mathbb Z^_p = {\overline 1, \overline 2, \cdots, \overline{p-1}}$ Then, because $|\mathbb Z^_p|=p-1$ and $F\in \mathbb Z^_p$, by (2) of COR, $$F^{p-1}=\overline 1=(\text{identity of }\mathbb Z_p^)$$$$\implies F(F^{p-1})=F\implies F^p=F \Leftrightarrow r^p \mod p = r\mod p$$
- Proof: Using the division algorithm, we can write
- Thm: If
$G$ is finite an of order$2p$ with$p$ prime, then$G\simeq \mathbb Z_{2p}$ or$sD_p$
(before is 3.1 Lagrange Theorem)
- Let
$G$ be a group and$X$ be a set. We have seen that a permutation of$X$ is a bijection$f:X\implies X$ . Also the set of all permutationsof$X$ is a group under composition, which we denote$Sym(X)$ . Note that if$X={1,\cdots, n}$ , then$Sym(X) = S_n, \forall n\in \mathbb N$ - Def: a group action of
$G$ on$X$ is a choice ,$\forall g\in G$ , of a permutation$\pi_g:X\implies X$ such that:- (i)
$\pi_e = id_X$ - (ii)
$\forall g_1, g_2\in G, \pi_{g_1g_2} = \pi_{g_1}\circ\pi_{g_2}$ - Then,
$G$ is said to act on$X$ . Also, if$\pi_g=id_X$ , then$g$ is said to act trivially on$X$ . In fact, if$\pi_g=id_X, \forall g\in G$ , then the action is called trivial.
- (i)
- Ex:
-
-
$G=S_n$ and$X={1,\cdots, n}$ Then,$S_n$ acts on$X$ in the natural way:$\forall \sigma \in S_n$ , then$\sigma: X\implies X$ is a permutaiton by definition. So we can define:$$\pi:Sn\implies Sym(X)=S_n$$ $$\sigma\mapsto \pi_{\sigma} =\sigma$$ Then: (i)$\pi_{\epsilon} = \epsilon = id_X:X\implies X$ ; (ii)$\pi_{\sigma_1\sigma_2} = \pi_{\sigma_1}\circ\pi_{\sigma_2}$ Therefore, the choice$\pi_\sigma:=\sigma, \forall \sigma \in S_n$ , gives an action of$S_n \in X$ .
-
-
- Let G be a group and let
$X=G$ . Then,$Sym(X) = Sym(G)$ , which contains$Aut(G)$ , but is much bigger. From the proof of Cayley's Thm, we have seen the following action:$$\pi:G\implies Sym(X)=Sym(G)$$ $$g\mapsto\pi_g=(T_g:G\implies G, x\mapsto gx\text{(left multiplication by g)})$$ Note that$T_g\in Sym(G)$ but$T_g\not \in Aut(G)$ if$g\neq e$ (because$T_g$ is not a homomorphism when$g\neq e$ ). We checked, when proving Cayley's Thm, that:
- (i)
$T_e=id_G \implies \pi_e=id_X$ - (ii)
$T_{g_1}\circ T_{g_2} = T_{g_1g_2}\implies \pi_{g_1}\circ \pi_{g_2} = \pi_{g_1g_2}\implies \pi$ is a group action of$G$ on itself called left multiplication (one defines similarly the action of$G$ on itself by right multiplication)
- Let G be a group and let
-
- Let
$G$ be a group and$X=G$ . We can define the action of$G$ on itself by conjugation as follows:$$\pi: G\implies Sym(X)=Sym(G)$$ $$g\mapsto \pi_g=(\phi_g:G\implies G, x\mapsto gxg^{-1})$$ where$\phi_g$ is inner automorphism of$G$ induced by$g$ . Then, $\pi_g\in Inn(G)\subset Aut(G)\subset Sym(G)\leadsto \pi_g $ is an automorphism$\forall g\in G$ . Then$\pi$ is a group action (check that (i) (ii) hold!)
- Let
- Note that if
$g\in \mathcal Z(G)$ , then$gx=xg, \forall x\in G\Leftrightarrow gxg^{-1}=x,\forall x\in G$ . So$\phi_g=id_X\implies \pi_g=id_X$ if$g\in \mathcal Z(G) \implies \forall g\in Z(G)$ ,$g$ acts trivially on$X$ by conjugation. - In particular, if
$G$ is abelian (so that $G=\mathcal Z(G)$), then every element in$G$ act trivially on$G$ by conjugation. In this case, the action of$G$ on$G$ by conjugation is trivial.
-
- Remark: A group action of
$G$ on$X$ corresponse to a homomorphism$$\pi:G\implies Sym(X)$$ $$g\mapsto \pi_g$$ [Indeed, condition (i) and (ii) in the definition tell us that$\pi$ is a homomorphism] This homomorphism is called the permutation of representation of the action of$G$ on$X$ Then:$\ker\pi={g\in G \mid \pi_g=id_X} = {g\in G\mid \text{ g acts trivially on X}}$ $\operatorname{Im}\pi = {\text{the set of all permutations of X specified by the action is a subgroup of }Sym(X)}$
- Def: A group action
$\pi: G\implies Sym(X)$ of a group$G$ on a set$X$ is called faithful if$\ker \pi={e}$
2016/07/06
- Review:
- Let
$G$ be a group and$X$ be a set - Group action of
$X$ on$G$ :$\forall g\in G$ , have a choice of permutaion$\pi_g\in Sym(X) = {f:X\implies X\mid f\text{ is a bijection}}$ such that$\pi_e = id_x :X\implies X, x\mapsto x$ $\pi_{g_1}\circ \pi_{g_2} = \pi_{g_1g_2}, \forall g_1,g_2\in G$ -
$\leadsto$ It corresponsds to homomorphism:$$\pi:G\implies Sym(X)$$ $$g\mapsto \pi_g$$
- Note:
- (i)
$\ker \pi = {g\in G\mid \pi_g = id_X} = {g\in G \mid g\text{ acts trivially on }X}$ . In particular, if$\ker \pi = G$ , then the action is trivial. - (ii)
$\operatorname{Im} \pi$ is the subgroup of$Sym(X)$ corresponding to all the permutations of$X$ given by the action.
- (i)
- Let
- Def'n: A group
$G$ is said to act faithfully on the set$X$ if$\ker \pi={e}$ . The action is then called faithful (or effective)- E.g.
-
- If
$G = S_n$ and$X={1, \cdots, n}$ with$S_n$ acts on${1, \cdots, n}$ in the natural way:$$\pi: S_n\implies Sym({1, \cdots, n})=S_n$$ $$\sigma\mapsto \sigma$$ $\implies \ker \pi = {\epsilon}\implies$ This action is faithful.
- If
-
- Let
$G$ be a group and$X = G$ , and$G$ acts on itself by conjugation:$$\pi \implies Sym(G)$$ $$g\mapsto (\phi_g:G\implies G, x\mapsto gxg^{-1})$$ Then,$\ker \pi = \mathcal Z(G)$ (because $\phi_g = id_G\Leftrightarrow gxg^{-1}=x, \forall x\in G\Leftrightarrow gx=xg\forall x\in G\Leftrightarrow g\in \mathcal Z(G)$)$\implies$ This action is faithful$\iff \mathcal Z(G) = {e}$ . In particular, if$G$ is abelian, then$\mathcal Z(G) = G$ , implying that the action is not faithful if$G\neq {e}$ (i.e.$G$ is not the trivial group)
- Let
-
-
$G = S_n$ and$X = \mathbb R[x_1, \cdots, x_n] = {\text{set of polynomial in the }n\text{ variables x_1, \cdots, x_n}}$ (e.g.$p(x_1, \cdots, x_n)=2x_1^2x_n - 3x_3x_{n-1}^4$ ). Define the following action of$S_n$ on X:$$\pi: S_n\implies Sym(X)$$ $$\sigma \mapsto (\pi_\sigma: X\implies X, p(x_1, \cdots, x_n)\mapsto p(x_{\sigma(1)}, \cdots, x_{\sigma(n)}))$$
- e.g.
$\sigma = (1,2,\cdots, n) \leadsto \sigma(i) = i+1$ if$1\le i\le n-1$ and$\sigma(n) = 1$ .$\pi_\sigma: X\implies X, p(x_1, x_2, \cdots, x_{n-1}, x_n) \mapsto p(x_2, x_3, \cdots, x_n, x_1)$ . (as in last example, $(2x_1^2x_n - 3x_3x_{n-1}^4 \mapsto 2x_2^2x_1 - 3x_4x_{n}^4)$). - This is an action (exercise). [CHECK that
$\pi_\epsilon = id_X, \pi_{\sigma\tau}=\pi_\sigma\circ\pi_\tau$ ] - Is this action faithful? Yes! Let us verify that
$\ker \pi = {\epsilon}$ . Let$\sigma\in \ker \pi$ so that$\pi_\tau = id_X$ $\Leftrightarrow \pi_\sigma(p(x_1, \cdots, x_n) = p(x_1, \cdots, x_n)), \forall p(x_1, \cdots, x_n)\in X$ $\Leftrightarrow p(x_\sigma(1), \cdots, x_\sigma(n)) = p(x_1, \cdots, x_n), \forall p(x_1, \cdots, x_n) \in X$ . - In particular, if
$p(x_1, \cdots, x_n) = x_i, \forall i = 1, \cdots, n,$ we have that$\pi_\tau(x_i) = x_i, \forall i = 1,\cdots,n$ $\Leftrightarrow x_{\sigma(i)} = x_i \forall i=1,\cdots,n$ $\Leftrightarrow \sigma(i)=i, \forall i=1,\cdots,n$ $\Leftrightarrow \sigma = \epsilon$ - So:
$\ker \pi={\epsilon}$ where$\pi:S_n \implies Sym(X)$ (with$X = \mathbb R[x1,\cdots, xn]\implies \operatorname{Im} \pi \simeq Sn$
-
-
- E.g.
- Definition: Let
$G$ be a group, and$X$ be a set. Suppose that$G$ acts on$X$ . Then,$X$ is called a$G$ -set. If the action is given by the homomorphism$$\pi: G\implies Sym(X)$$ we write,$\forall g\in G$ , if$\pi_g = \pi(g) \in Sym(X)$ ,$$x\cdot x:=\pi_g(x) \text{ (where the }\cdot\text{ is } g\text{ acts on the element }x\in X, \forall x\in X\text{)}$$ Using this notation, the definition of a group action becomes:$\forall g\in G, \exists$ a choice of a permutaiton$\pi_g: X\implies X, x\mapsto g\cdot x$ such that:- (i)
$e\cdot x = x, \forall x\in X$ - (ii)
$\forall g_1, g_2\in G, g_1\cdot(g_2\cdot x) = (g_1\cdot g_2)\cdot x, \forall x\in X$
- (i)
- Thm: Suppose that
$X$ is a$G$ -set. If$x\in X$ and$g\in G$ and$y = g\cdot x$ , then$x = g^{-1} \cdot y$ . If$x\neq x'$ , then$g\cdot x\neq g\cdot x', \forall x, x'\in X$ .- Pf: Suppose that
$y = g\cdot x$ . But$g^{-1}\in G$ , so that$$g^{-1} \cdot y=g^{-1} \cdot(g\cdot x) = (g^{-1}\cdot g)\cdot x=e\cdot x=x$$ Let$x,x'\in X$ . If$g\cdot x = g\cdot x'$ , then$$x=g^{-1}\cdot (g\cdot x)=g^{-1}\cdot (g\cdot x')=x'$$
- Pf: Suppose that
- Def: Let
$G$ be a group,$X$ be a$G$ -set and$x\in X$ . We define$G_X = stab(X):= {g\in G\mid g\cdot x = x} = (\text{stabilizer of }x\text{ in }G)$ - Note:
$e\in G_X$ because, by def of any action of$G$ on$X$ ,$e\cdot x =x,\forall x\in X$ . - Ex:
$G = D_3$ , and$X = {\text{ verticies of an equilateval trianble}} = {1,2,3}$ . Consider the natural action of$D_3$ on$X$ :$$\pi: D_3\implies Sym(X)$$ $$g\mapsto g$$ Let$x = 1$ . What is$stab(1) = G_1$ ?$G_1 = {id_X, \text{ reflection with respect to the line going throught }1}$ - (In above image,
$\mu_1 = G_1$ )
- Note:
- Prop:
$G_X$ is a subgroup of$G, \forall x\in X$ .- Pf: exercise
2016/07/08
-
Review
- Let G be a group and X be a G-set.
-
$\forall x \in X$ , then:-
$G_X = \operatorname{stab}(x) = {g\in G\mid g\cdot x = x}$ $=(\text{stabilizer of } x \text{ in }G)$ $\leadsto$ subgroup of$G$ -
$O_X = {y\in X\mid x\sim y}$ $= {y\in X\mid y = g\cdot x \text{ for some } g\in G}$ $=(\text{orbit of } x \text{ in } X)\subset X$
-
- Note:
- (1)
$\forall a,a'\in X$ , then$O_a = O_{a'}$ , or$O_a \cap O_{a'}$ - (2) If
$G$ is finite,$|O_a| = \frac{|G|}{G_a}, \forall a \in X$ - (3) If
$X$ is finite, then$|X| = |O_{a_1}|+\cdots +|O_{a_N}|$ where$O_{a_1},\cdots,O_{a_N}$ are the distinct orbits
- (1)
-
missing...
-
Prop: Let
$X$ be a G-set. Moreover, let$a\in X$ and$b\in O_a$ so that$b = g\cdot a$ for some$g\in G$ . Then,$G_b\simeq G_a$ . In fact,$G_b = gG_ag^{-1} = {ghg^{-1}\mid h\in G_a}$ and$|G_b| = |G_a|$ -
Note:
-
- If
$G$ is abelian, then$gG_ag^{-1}=G_a$ so that$G_b=G_a$ for any$b\in O_a$
- If
-
- If the action is transitive so that, by definition, there is onl one orbit, say
$O_a$ with$a\in X$ , then$\forall b\in X, G_b=gG_ag^{-1}$ where$g\in G$ is such that$b=g\cdot a$
- If the action is transitive so that, by definition, there is onl one orbit, say
-
-
Proof:
- missing...
$\iff g\cdot((h\cdot g^{-1})\cdot (g\cdot a)) = g\cdot a$ $\iff (g\cdot h\cdot g^{-1})\cdot (g\cdot a) = g\cdot a$ $\iff (g\cdot h\cdot g^{-1})\cdot b = b$ $\iff g\cdot h\cdot g^{-1}\in G_b$ - ..., since
$G_b\simeq G_a$ , we have that$|G_b|=|G_a|$
-
Ex:
-
-
$G = {\text{rotation in }R^3 \text{ about the z-axis}}$ $= {R_\theta | \theta\in \mathbb R\text{ is the angle of rotation ccw wrt xy-plane}}$ . $$ $$$X = S^2={(x,y,z)\in \mathbb R^3 \mid x^2+y^2+z^2 = 1}$ $\forall R_\theta \in G, R_\theta \cdot p = R_\theta(p ), \forall p \in X$ -
- Orbits:
- if
$p = (0,0,\pm 1)$ , then$O_p = {p}$ ; - if
$p = (x_0,y_0,z_0)\neq (0,0,\pm 1)$ , then$O_{p_n}=S^2\cap {z=z_0}$
- if
- Stablisers:
- if
$p = (0,0,\pm 1)$ , then$\operatorname{stab}(p) = G$ - if
$p_0 = (x_0, y_0, z_0)\neq (0,0,\pm 1)$ , then$\operatorname{stab}(p_0) = {R_\theta \mid \theta = 2\pi k, k\in \mathbb Z}$ . Also,$\forall q\in O_{p_0}, \operatorname{stab}(q) = {R_\theta | \theta = 2\pi k, k\in Z} = \operatorname{stab}(p_0)$
- if
- Note that
$G$ is abelian so that the stabilisers of any 2 points in a fixed orbit are equal.
-
-
-
$G = S_4, X = {1,2,3,4}$ and$\sigma \cdot i = \sigma(i), \forall \sigma \in G$ and$\forall i\in X$ .$\operatorname{stab}(i) = {\sigma \in S_4 | \sigma(i) = i} \simeq S_3$ $$O_i = {1,2,3,4} = X\leadsto \text{ the action is t ransitive}$$ The proposition tells us that,$\forall i,j\in X$ , the stablisers are conjugate. Suppose$i\ne j$ , then$j=\sigma_0(i)$ with$\sigma_0 = (i,j)$ $$\implies j=\sigma_0\cdot i$$ $$\implies \operatorname{stab}(j) = \sigma_0 \operatorname{s tab}(i) \sigma_0^{-1} = (i,j) \operatorname{stab}(i) (i,j)^{-1}$$ $$\implies \text{ all stabilisers are conjugates of each other}$$
-
-
- Motivation: Finding a way of counting the number of orbits of an action of a group G on a set X $$ $$
$\leadsto$ In applications, number patterns or numbers of objects with contain properties can be made to co rrespond to the number of orbits of an action of a group on a set. - E.g. Consider a square:
- Question: How many ways are there of colouring two vertices white and two vertices black: since choosing 2 vertices out of 4 to colour white forces the remaining two be black, there are
$4 \choose 2$ = 6 ways. - - What if we rephrase the problem as follows: how many square tiles are there with 2 white corners and 2 black corners? $$ $$ There are only 2 possiblilities: either the corners are adjacent, or they are opp osite
- Question: How many ways are there of colouring two vertices white and two vertices black: since choosing 2 vertices out of 4 to colour white forces the remaining two be black, there are
2016/07/11
... (missing)
2016/07/13
... (missing)
3 pics...
- Ex:
-
- G = {rotation in R^3 about the z-axis} = {R_\theta | \theta\in R is the angle of rotation ccw wrt xy-plane}. X = S^2={(x,y,z)\in R^3 | x2+y2+z2 = 1} \forall R_\thata \in G, R_\theta \cdot p = R_\theta(p), \forall p \in X (pic...)
- Orbits:
- if p = (0,0,\pm 1), then O_p = {p};
- if p\neq (0,0,\pm 1), then O_p_n=S^2\cap {z=z0}
- Stablisers:0
- if p = (0,0,\pm 1), then stab(p) = G
- if p_0 = (x0, y0, z0)\neq (0,0,\pm 1), then stab(p_0) = {R_\theta | \theta = 2\pi k, k\in \mathbb Z}. Also, \forall q\in O_p_0, stab(q) = {R_\theta | \theta = 2\pi k, k\in Z} = stab(p_0)
- Note that G is abelian so that the stabilisers of any 2 points in a fixed orbit are equal.
-
- G = S_4, X = {1,2,3,4} and \sigma \cdot i = \sigma(i), \forall \sigma \in G and \forall i\in X. Stab(i) = {\sigma \in S_4 | \sigma(i) = i} \simeq S_3
$$O_i = {1,2,3,4} = X\leadsto \text{ the action is transitive}$$ The proposition tells us that, \forall i,j\in X, the stablisers are conjugate. Suppose i\ne j, then j=\sigma_0(i) with \sigma_0 = (i j)$$\implies j=\sigma_0\cdot i$$ $$\implies stab(j) = \sigma_0 stab(i) \sigma_0^{-1} = (i j) stab(i) (i j)^{-1}$$ $$\implies \text{ all stabilisers are conjugates of each other}$$
- G = S_4, X = {1,2,3,4} and \sigma \cdot i = \sigma(i), \forall \sigma \in G and \forall i\in X. Stab(i) = {\sigma \in S_4 | \sigma(i) = i} \simeq S_3
-
- Motivation: Finding a way of counting the number of orbits of an action of a group G on a set X $$ $$
$\leadsto$ In applications, number patterns or numbers of objects with contain properties can be made to correspond to the number of orbits of an action of a group on a set. - E.g. Consider a square:
- Question: How many ways are there of colouring two vertices white and two vertices black: since choosing 2 vertices out of 4 to colour white forces the remaining two be black, there are (4 choose 2) = 6 ways. (pic)
- What if we rephrase the problem as follows: how many square tiles are there with 2 white corners and 2 black corners? $$ $$ There are only 2 possiblilities: either the corners are adjacent, or they are opposite
- can obtain these two possibilities from the previous one by considering the orbits of the action of the rotations in D_4 on set of 6 squares {1,2,3,4,5,6}. We see that there are 2 orbits (pic)
2016/07/15
... (missing)
2016/07/18
... (missing)
2016/07/20
... (missing)
2016/07/22
... (missing)
2016/07/25
- Def: Let
$G_1, \cdots, G_n$ be groups. Define:$$G_1\oplus \cdots \oplus G_n$$ $$= {(g_1,\cdots , g_n)\mid g_i\in G_i, \forall i=1,\cdots n}$$ $$=(\text{(external) direct product of}G_1,\cdots, G_n)$$ - Prop:
$G_1\oplus\cdots\oplus G_n$ is a group under the operation.$$(g_1,\cdots, g_n)\cdot(g_1',\cdots, g_n') = (g_1\cdot g_1',\cdots, g_n\cdot g_n')$$ $$ \forall (g_1,\cdots, g_n)(g_1',\cdots, g_n')\in G_1\oplus \cdots \oplus G_n$$- Pf: The operation is certainly associative since the operation in each
$G_i$ is associative. Also, the identity is$(e_1,\cdots, e_n)$ with$e_i$ the identity in each$G_i$ . Finally,$\forall (g_1,\cdots, g_n)\in G_1\oplus \cdots \oplus G_n, (g_1,\cdots, g_n)^{-1}$ exists as is equal to$(g_1^{-1},\cdots, g_n^{-1})$
- Pf: The operation is certainly associative since the operation in each
- E.x.
-
- If
$V,W$ are vector spaces, then they are abelian groups under vector addition. Then$V\oplus W$ corresponds to the direct sum of the vector spaces, where the vector space structure has addition the group operation on$V\oplus W$
- E.g.
$\mathbb R\oplus \mathbb R\oplus \mathbb R = \mathbb R^3 \leftrightsquigarrow (\mathbb R, +) \oplus (\mathbb R, +) \oplus (\mathbb R, +) = (\mathbb R^3, +)$
- If
-
-
$G_1 = (\mathbb Z_2, +)$ and$G_2 = (mathbb Z_3, +)$ ,$G_1 \oplus G_2 = {(\overline{m_1},\overline{m_2})\mid \overline{m_1}\in G_1 = {\overline 0, \overline 1}\text{ and }\overline{m_2} \in G_2 = {\overline 0, \overline 1, \overline 2}}$ $= {(\overline 0,\overline 0), (\overline 0,\overline 1), (\overline 0,\overline 2), (\overline 1,\overline 0), (\overline 1,\overline 1), (\overline 1,\overline 2)}$ Note that:
-
$G_1\oplus G_2$ is abelian because$G_1$ and$G_2$ are abelian -
$G_1\oplus G_2 = \langle(\overline 1,\overline 1)\rangle$ : - Here
$\mathbb Z_2=\langle 1\rangle$ and$\mathbb Z_3 = \langle 1\rangle$ - Then:
$(\overline 1,\overline 1) + (\overline 1,\overline 1) = (\overline 2,\overline 2) = (\overline 0,\overline 2) = 2(\overline 1,\overline 1)$ $(\overline 1,\overline 1) + (\overline 1,\overline 1) + (\overline 1,\overline 1) = (\overline 3,\overline 3) = (\overline 1,\overline 0) = 3(\overline 1,\overline 1)$ $4(\overline 1,\overline 1) = (\overline 4,\overline 4) = (\overline 0,\overline 1)$ $5(\overline 1,\overline 1) = (\overline 5,\overline 5) = (\overline 1,\overline 2)$ $6(\overline 1,\overline 1) = (\overline 6,\overline 6) = (\overline 0,\overline 0)$ -
$\implies G_1\oplus G_2 = \langle (\overline 1,\overline 1)\rangle$ is cyclic
-
-
-
$G_1 = (\mathbb Z_2,+)$ , and$G_2 = (\mathbb Z_2, +)$ , then
-
$G_1\oplus G_2$ is abelian because$G_1$ and$G_2$ are -
$G_1\oplus G_2$ is not cyclic even though$G_1$ and$G_2$ are - Here:
$G_1\oplus G_2$ $= {(\overline{m_1}, \overline{m_2})\mid \overline{m_1}, \overline{m_2} \in \mathbb Z_2= {\overline 0, \overline 1}}$ $= {(\overline 0,\overline 0), (\overline 0,\overline 1), (\overline 1,\overline 0), (\overline 1,\overline 1)}$ $\leadsto |G_1\oplus G_2| = 4$ - But no element in
$G_1\oplus G_2$ has order$4$ . Indeed,$|(\overline 0,\overline 0)| = 1$ and$|(\overline 0,\overline 1)| = |(\overline 1,\overline 0)| = |(\overline 1,\overline 1)| = 2$ since:$2(\overline 0,\overline 1) = (\overline 0,\overline 2) = (\overline 0,\overline 0)$ $2(\overline 1,\overline 0) = (\overline 2,\overline 0) = (\overline 0,\overline 0)$ $2(\overline 1,\overline 1) = (\overline 2,\overline 2) = (\overline 0,\overline 0)$
- Note: Even if
$G_1, \cdots, G_n$ are cyclic, the direct product$G_1\oplus \cdots \oplus G_n$ may not be cyclic.
-
-
- $G_1 = (\mathbb Z_3^,\cdot)$ and $G_2=(\mathbb Z_5^,\cdot)$. Then,
$\mathbb Z_3^* = {\overline 1,\overline 2}, \mathbb Z_5^* = {\overline 1,\overline 2,\overline 3,\overline 4}$ $\leadsto G_1\oplus G_2 = {(\overline{m_1},\overline{m_2})\mid \overline{m_1}\in \mathbb Z_3^, \overline{m_2}\in \mathbb Z_5^}$$= {(\overline 1,\overline 1),(\overline 1,\overline 2),(\overline 1,\overline 3),(\overline 1,\overline 4),(\overline 2,\overline 1),(\overline 2,\overline 2),(\overline 2,\overline 3),(\overline 2,\overline 4)}$ $\implies |G_1\oplus G_2| = 8$ . Then:
-
$G_1\oplus G_2$ is abelian because$G_1, G_2$ are abelian -
$G_1\oplus G_2$ is cyclic because$\operatorname{gcd}(|G_1|, |G_2|) = 1$ and$G_1, G_2$ are cyclic (upcoming theorem) -
Group Str:
$(\overline 2,\overline 3)\cdot(\overline 1,\overline 4) = (\overline 2\cdot\overline 1, \overline 3\cdot \overline 4) = (\overline 2,\overline{12}) = (\overline 2,\overline 2)$ etc.
- $G_1 = (\mathbb Z_3^,\cdot)$ and $G_2=(\mathbb Z_5^,\cdot)$. Then,
-
- Thm: Let
$G_1, \cdots, G_n$ be groups and$(g_1,\cdots, g_n)\in G_1\oplus \cdots \oplus G_n$ . Then$$|(g_1,\cdots, g_n)|=\operatorname{lcm}(|g_1|,\cdots, |g_n|)$$ - Pf: (only do case
$n=2$ ):-
$G_1\oplus G_2$ . Let$(g_1,g_2)\in G_1\oplus G_2$ . Set$s = \operatorname{lcm}(|g_1|, |g_2|), t = |(g_1,g_2)|$ . - Let us show that
$s=t$ . - We have:
$(g_1,g_2)^s = (g_1^s,g_2^s) = (e_1, e_2)$ because$|g1|, |g2| \mid s$ $\implies |(g_1,g_2)|\mid s\implies t\mid s\implies t\le s$ - But we also have that
$s\le t$ because: since$t = |(g_1,g_2)|$ , we have$(g_1,g_2)^t = (e_1,e_2)$ . But$(g_1,g_2)^t = (g_1^t, g_2^t)$ $\implies (g_1^t,g_2^t) = (e_1,e_2)$ $\implies g_1^t = e_1 and g_2^t = e_2$ $\implies |g_1|\mid t$ and$|g_2|\mid t$ $ \implies \operatorname{lcm}(|g_1|,|g_2|)\mid t$$\implies s\mid t\implies s\le t\implies s=t$
-
- Pf: (only do case
- Thm: Let
$G_1, \cdots, G_n$ be finite cyclic groups. Then,$G_1\oplus\cdots\oplus G_n$ is cyclic iff$\operatorname{gcd}(|G_i|,|G_j|)=1, \forall i,j=1,\cdots, n\text{ with }i\neq j$ - Pf: Let's proof
$n=2$ : Suppose that$G_1 = \langle a_1\rangle , and G_2 = \langle a_2\rangle$ . Then,$|G_1\oplus G_2|$ $= {(g_1,g_2)| g_1\in G_1, g_2\in G_2}$ $= |G_1|\cdot |G_2|$ . Note that$|G_1|\cdot |G_2| = \operatorname{lcm}(|G_1|,|G_2|)$ iff$\operatorname{gcd}(|G_1|, |G_2|) = 1$ . But$|G_1| = |a_1| and |G_2| = |a_2|$ . So$|(a_1,a_2)| = \operatorname{lcm}(|a_1|,|a_2|)\implies |(a_1,a_2)| = |G_1\oplus G_2|$ iff$\operatorname{lcm}(|G_1|,|G_2|) = |G_1\oplus G_2|$ iff$\operatorname{gcd}(|G_1|,|G_2|)$ - Note: If
$G_i = \langle a_i\rangle$ and$gcd(|a_i|,|a_j|) = 1,\forall i\neq j$ , then$$G_1\oplus \cdots\oplus G_2 = \langle(a_1,\cdots, a_n)\rangle$$
- Pf: Let's proof
- Thm:
-
-
$\mathbb Z_{n_1}\oplus\cdots\oplus \mathbb Z_{n_s}\simeq \mathbb Z_{n_1\cdots n_s}$ iff$gcd(n_i,n_j) = 1,\forall i\neq j$
-
-
- $\mathbb Z_{s_1}^\oplus \cdots \oplus Z_{s_1}^ \simeq Z_{s_1\cdots s_n}^*$ iff
$gcd(s_i, s_j) = 1, \forall i \neq j$
- $\mathbb Z_{s_1}^\oplus \cdots \oplus Z_{s_1}^ \simeq Z_{s_1\cdots s_n}^*$ iff
-
- Thm: (fundamental thm of finite abelian groups) every finite abelian group is a direct product of cyclic groups of prime power order:
$G=\mathbb Z_{p_1^{n_1}}\oplus \cdots\oplus Z_{p_m^{n_m}}$ with$p_i =$ prime