Skip to content

A computational framework for imputation of missing data in low-coverage human mitochondrial genome

License

Notifications You must be signed in to change notification settings

omics-tools/mitoimp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MitoIMP

Description

MitoIMP: A computational framework for imputation of missing data in low-coverage human mitochondrial genome

Requirement

・python 2.7 (pypy2)

MAFFT: Multiple alignment program for amino acid or nucleotide sequences

 Please refer to the official site for details of the installation of MAFFT.

Installation

Clone this repository into your local machine
git clone https://github.com/omics-tools/mitoimp.git

Usage

Basic Usage

mitoimp.py -i input.fasta [-k 5] [-f 0.7] [-t 4]

Example1

An imputed sequence and a summary table are output to the same directory as the input file.

mitoimp.py -i ./sample_data/A_cov65.fasta -k 5 -f 0.7 -t 4

Example2

If you want to use a sequence oriented to the rCRS position by other alignment software, please set -no_aln flag.

mitoimp.py -i ./sample_data/Z_cov85.fasta -k 5 -f 0.7 -t 4 -no_aln

optional arguments:

Flag Description File Format, Parameter etc.
-i query sequence (required) Single-FASTA format
-p in-house (customized) panel sequences Multi-FASTA format
-w window-size (default: 16569) 1 〜 16569
-k k-number (default: 5) 1 〜 max of panel sequences
-f the threshold frequency to determine a genotype (default: 0.7) 0.5 〜 1.0
-t multiprocessing numbers (default: the max of available CPU-threads) 1 〜 (max: -1)
-no_aln set a switch to non-alignment mode (default: Disable)
-v show program's version number and exit
-h show this help message and exit

Version

1.0.1 (beta)

Licence

[MIT] https://github.com/omics-tools/mitoimp/blob/master/LICENSE

Citation

Ishiya, K., Mizuno, F., Wang, L., & Ueda, S. (2019). MitoIMP: A Computational Framework for Imputation of Missing Data in Low-Coverage Human Mitochondrial Genome. Bioinformatics and biology insights.

About

A computational framework for imputation of missing data in low-coverage human mitochondrial genome

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages