-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
174 lines (131 loc) · 5.15 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import List, Optional, Tuple
import numpy as np
import requests
import torch
from PIL import Image
from pytorch3d.renderer import PerspectiveCameras
from torch.utils.data import Dataset
import matplotlib.pyplot as plt
DEFAULT_DATA_ROOT = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "data"
)
DEFAULT_URL_ROOT = "https://dl.fbaipublicfiles.com/pytorch3d_nerf_data"
ALL_DATASETS = ("lego", "fern", "pt3logo")
def trivial_collate(batch):
"""
A trivial collate function that merely returns the uncollated batch.
"""
return batch
class ListDataset(Dataset):
"""
A simple dataset made of a list of entries.
"""
def __init__(self, entries: List) -> None:
"""
Args:
entries: The list of dataset entries.
"""
self._entries = entries
def __len__(
self,
) -> int:
return len(self._entries)
def __getitem__(self, index):
return self._entries[index]
def get_nerf_datasets(
dataset_name: str, # 'lego | fern'
image_size: Tuple[int, int],
data_root: str = DEFAULT_DATA_ROOT,
autodownload: bool = True,
) -> Tuple[Dataset, Dataset, Dataset]:
"""
Obtains the training and validation dataset object for a dataset specified
with the `dataset_name` argument.
Args:
dataset_name: The name of the dataset to load.
image_size: A tuple (height, width) denoting the sizes of the loaded dataset images.
data_root: The root folder at which the data is stored.
autodownload: Auto-download the dataset files in case they are missing.
Returns:
train_dataset: The training dataset object.
val_dataset: The validation dataset object.
test_dataset: The testing dataset object.
"""
if dataset_name not in ALL_DATASETS:
raise ValueError(f"'{dataset_name}'' does not refer to a known dataset.")
print(f"Loading dataset {dataset_name}, image size={str(image_size)} ...")
cameras_path = os.path.join(data_root, dataset_name + ".pth")
image_path = cameras_path.replace(".pth", ".png")
if autodownload and any(not os.path.isfile(p) for p in (cameras_path, image_path)):
# Automatically download the data files if missing.
download_data((dataset_name,), data_root=data_root)
train_data = torch.load(cameras_path)
n_cameras = train_data["cameras"]["R"].shape[0]
_image_max_image_pixels = Image.MAX_IMAGE_PIXELS
Image.MAX_IMAGE_PIXELS = None # The dataset image is very large ...
images = torch.FloatTensor(np.array(Image.open(image_path))) / 255.0
images = torch.stack(torch.chunk(images, n_cameras, dim=0))[..., :3]
Image.MAX_IMAGE_PIXELS = _image_max_image_pixels
scale_factors = [s_new / s for s, s_new in zip(images.shape[1:3], image_size)]
if abs(scale_factors[0] - scale_factors[1]) > 1e-3:
raise ValueError(
"Non-isotropic scaling is not allowed. Consider changing the 'image_size' argument."
)
scale_factor = sum(scale_factors) * 0.5
if scale_factor != 1.0:
print(f"Rescaling dataset (factor={scale_factor})")
images = torch.nn.functional.interpolate(
images.permute(0, 3, 1, 2),
size=tuple(image_size),
mode="bilinear",
).permute(0, 2, 3, 1)
cameras = [
PerspectiveCameras(
**{k: v[cami][None] for k, v in train_data["cameras"].items()}
).to("cpu")
for cami in range(n_cameras)
]
train_idx, val_idx, test_idx = train_data["split"]
# train_idx = torch.tensor(np.arange(20), device="cuda")
# print(train_idx)
train_dataset, val_dataset, test_dataset = [
ListDataset(
[
{"image": images[i], "camera": cameras[i], "camera_idx": int(i)}
for i in idx
]
)
for idx in [train_idx, val_idx, test_idx]
]
return train_dataset, val_dataset, test_dataset
def download_data(
dataset_names: Optional[List[str]] = None,
data_root: str = DEFAULT_DATA_ROOT,
url_root: str = DEFAULT_URL_ROOT,
) -> None:
"""
Downloads the relevant dataset files.
Args:
dataset_names: A list of the names of datasets to download. If `None`,
downloads all available datasets.
"""
if dataset_names is None:
dataset_names = ALL_DATASETS
os.makedirs(data_root, exist_ok=True)
for dataset_name in dataset_names:
cameras_file = dataset_name + ".pth"
images_file = cameras_file.replace(".pth", ".png")
license_file = cameras_file.replace(".pth", "_license.txt")
for fl in (cameras_file, images_file, license_file):
local_fl = os.path.join(data_root, fl)
remote_fl = os.path.join(url_root, fl)
print(f"Downloading dataset {dataset_name} from {remote_fl} to {local_fl}.")
r = requests.get(remote_fl)
with open(local_fl, "wb") as f:
f.write(r.content)