@@ -8,12 +8,11 @@ VideoQnA is implemented on top of [GenAIComps](https://github.com/opea-project/G
8
8
---
9
9
config:
10
10
flowchart:
11
- nodeSpacing: 100
11
+ nodeSpacing: 400
12
12
rankSpacing: 100
13
13
curve: linear
14
- theme: base
15
14
themeVariables:
16
- fontSize: 42px
15
+ fontSize: 50px
17
16
---
18
17
flowchart LR
19
18
%% Colors %%
@@ -25,64 +24,55 @@ flowchart LR
25
24
%% Subgraphs %%
26
25
subgraph VideoQnA-MegaService["VideoQnA-MegaService"]
27
26
direction LR
28
- EM([Embedding <br> ]):::blue
29
- RET([Retrieval <br> ]):::blue
30
- RER([Rerank <br> ]):::blue
31
- LLM([LLM <br> ]):::blue
27
+ EM([Embedding MicroService ]):::blue
28
+ RET([Retrieval MicroService ]):::blue
29
+ RER([Rerank MicroService ]):::blue
30
+ LVM([LVM MicroService ]):::blue
32
31
end
33
32
subgraph User Interface
34
- direction TB
33
+ direction LR
35
34
a([User Input Query]):::orchid
36
35
UI([UI server<br>]):::orchid
37
36
Ingest([Ingest<br>]):::orchid
38
37
end
39
- subgraph VideoQnA GateWay
40
- direction LR
41
- invisible1[ ]:::invisible
42
- GW([VideoQnA GateWay<br>]):::orange
43
- end
44
- subgraph .
45
- X([OPEA Micsrservice]):::blue
46
- Y{{Open Source Service}}
47
- Z([OPEA Gateway]):::orange
48
- Z1([UI]):::orchid
49
- end
50
38
51
39
LOCAL_RER{{Reranking service<br>}}
52
40
CLIP_EM{{Embedding service <br>}}
53
41
VDB{{Vector DB<br><br>}}
54
42
V_RET{{Retriever service <br>}}
55
43
Ingest{{Ingest data <br>}}
56
44
DP([Data Preparation<br>]):::blue
57
- LVM_gen{{LLM Service <br>}}
45
+ LVM_gen{{LVM Service <br>}}
46
+ GW([VideoQnA GateWay<br>]):::orange
58
47
59
48
%% Data Preparation flow
60
49
%% Ingest data flow
61
50
direction LR
62
- Ingest[Ingest data] -->|a| DP
63
- DP <-.->|b| CLIP_EM
51
+ Ingest[Ingest data] --> UI
52
+ UI --> DP
53
+ DP <-.-> CLIP_EM
64
54
65
55
%% Questions interaction
66
56
direction LR
67
- a[User Input Query] -->|1| UI
68
- UI -->|2| GW
69
- GW <==>|3| VideoQnA-MegaService
70
- EM ==>|4| RET
71
- RET ==>|5| RER
72
- RER ==>|6| LLM
57
+ a[User Input Query] --> UI
58
+ UI --> GW
59
+ GW <==> VideoQnA-MegaService
60
+ EM ==> RET
61
+ RET ==> RER
62
+ RER ==> LVM
73
63
74
64
75
65
%% Embedding service flow
76
- direction TB
77
- EM <-.->|3'| CLIP_EM
78
- RET <-.->|4'| V_RET
79
- RER <-.->|5'| LOCAL_RER
80
- LLM <-.->|6'| LVM_gen
66
+ direction LR
67
+ EM <-.-> CLIP_EM
68
+ RET <-.-> V_RET
69
+ RER <-.-> LOCAL_RER
70
+ LVM <-.-> LVM_gen
81
71
82
72
direction TB
83
73
%% Vector DB interaction
84
- V_RET <-.->|d| VDB
85
- DP <-.->|d| VDB
74
+ V_RET <-.->VDB
75
+ DP <-.->VDB
86
76
```
87
77
88
78
- This project implements a Retrieval-Augmented Generation (RAG) workflow using LangChain, Intel VDMS VectorDB, and Text Generation Inference, optimized for Intel Xeon Scalable Processors.
0 commit comments