You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
After a training file `alpaca_data.json` is uploaded, use the following command to launch a finetuning job using `meta-llama/Llama-2-7b-chat-hf` as base model:
28
+
After a training file like `alpaca_data.json` is uploaded, use the following command to launch a finetuning job using `meta-llama/Llama-2-7b-chat-hf` as base model:
29
29
30
30
```bash
31
31
# create a finetuning job
32
-
curl http://${your_ip}:8005/v1/fine_tuning/jobs \
32
+
curl http://${your_ip}:8015/v1/fine_tuning/jobs \
33
33
-X POST \
34
34
-H "Content-Type: application/json" \
35
35
-d '{
@@ -44,17 +44,14 @@ Below commands show how to list finetuning jobs, retrieve a finetuning job, canc
44
44
45
45
```bash
46
46
# list finetuning jobs
47
-
curl http://${your_ip}:8005/v1/fine_tuning/jobs -X GET
47
+
curl http://${your_ip}:8015/v1/fine_tuning/jobs -X GET
48
48
49
49
# retrieve one finetuning job
50
-
curl http://localhost:8005/v1/fine_tuning/jobs/retrieve -X POST -H "Content-Type: application/json" -d '{
51
-
"fine_tuning_job_id": ${fine_tuning_job_id}}'
50
+
curl http://${your_ip}:8015/v1/fine_tuning/jobs/retrieve -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
52
51
53
52
# cancel one finetuning job
54
-
55
-
curl http://localhost:8005/v1/fine_tuning/jobs/cancel -X POST -H "Content-Type: application/json" -d '{
56
-
"fine_tuning_job_id": ${fine_tuning_job_id}}'
53
+
curl http://${your_ip}:8015/v1/fine_tuning/jobs/cancel -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
57
54
58
55
# list checkpoints of a finetuning job
59
-
curl http://${your_ip}:8005/v1/finetune/list_checkpoints -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
56
+
curl http://${your_ip}:8015/v1/finetune/list_checkpoints -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
This document outlines the deployment process for a rerank model finetuning service utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice on Intel Xeon server. The steps include Docker image creation, container deployment. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service.
4
+
5
+
## 🚀 Build Docker Images
6
+
7
+
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
0 commit comments