Skip to content

Commit

Permalink
Support wildbench (#1266)
Browse files Browse the repository at this point in the history
Co-authored-by: Leymore <zfz-960727@163.com>
  • Loading branch information
kleinzcy and Leymore authored Jun 24, 2024
1 parent 83b9fd9 commit 1fa62c4
Show file tree
Hide file tree
Showing 10 changed files with 997 additions and 9 deletions.
30 changes: 30 additions & 0 deletions configs/datasets/subjective/wildbench/wildbench.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# Wildbench

## Prepare the dataset

We support the [wildbench dataset](https://github.com/allenai/WildBench), developed by Lin et al. Please refer to their repo for more detail.

You have to download our preprocessed dataset. The format of dir should be like:

```
wildbench
---wildbench.jsonl
---gpt4
------wildbench.json
---claude
------wildbench.json
---llama2-70b
------wildbench.json
```

The wildbench.jsonl is the preprocessed dataset, and the other three are the reference, used for score.

Once you download the dataset, you have to modify the path defined in `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` and `configs/datasets/subjective/wildbench/wildbench_single_judge.py`

## Run

We have provide the script for wildbench in `configs/eval_subjective_wildbench_pair.py` and `configs/eval_subjective_wildbench_single.py`.

Please modify the path for `give_pred` (line 171) in `configs/eval_subjective_wildbench_pair.py` to your path.

Note that if you test the wildbench with other models, please set the max_out_lens to 4096.
46 changes: 46 additions & 0 deletions configs/datasets/subjective/wildbench/wildbench_pair_judge.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import WildBenchDataset


subjective_reader_cfg = dict(
input_columns=['dialogue', 'prompt'],
output_column='judge',
)


data_path ='./data/WildBench/wildbench.jsonl'

subjective_datasets = []
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
)

subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template="""{prompt}"""
),
),
pred_role='BOT',
)

subjective_datasets.append(
dict(
abbr='wildbench',
type=WildBenchDataset,
path=data_path,
mode='pair',
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))
47 changes: 47 additions & 0 deletions configs/datasets/subjective/wildbench/wildbench_single_judge.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import WildBenchDataset


subjective_reader_cfg = dict(
input_columns=['dialogue', 'prompt'],
output_column='judge',
)

data_path ='./data/WildBench/wildbench.jsonl'

subjective_datasets = []

# the question is a list, how to process it
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
)

subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template="""{prompt}"""
),
),
pred_role='BOT',
)

subjective_datasets.append(
dict(
abbr='wildbench',
type=WildBenchDataset,
path=data_path,
mode='single',
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))
180 changes: 180 additions & 0 deletions configs/eval_subjective_wildbench_pair.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
from mmengine.config import read_base

with read_base():
# from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
from .datasets.subjective.wildbench.wildbench_pair_judge import subjective_datasets
from .models.openai.gpt_4 import models as gpt4_models
from .models.hf_llama.hf_llama2_70b_chat import models as llama2_models
# from .models.gemma.hf_gemma_2b_it import models
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model
# # from .models.hf_internlm.hf_internlm2_chat_7b import models
# from .models.yi.hf_yi_1_5_34b_chat import models as yi_model
# from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model

from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import WildBenchPairSummarizer
from opencompass.models.claude_api.claude_api import Claude
from opencompass.models import HuggingFacewithChatTemplate


models = sum([v for k, v in locals().items() if k.endswith('_model')], [])

api_meta_template = dict(
round=[
dict(role='SYSTEM', api_role='SYSTEM'),
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)

# _meta_template = dict(
# round=[
# dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
# dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
# ],
# )
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models

models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='llama-3-8b-instruct-hf',
path='meta-llama/Meta-Llama-3-8B-Instruct',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
stop_words=['<|end_of_text|>', '<|eot_id|>'],
),
dict(
type=HuggingFacewithChatTemplate,
abbr='yi-1.5-6b-chat-hf',
path='01-ai/Yi-1.5-6B-Chat',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
),
dict(
type=HuggingFacewithChatTemplate,
abbr='qwen1.5-7b-chat-hf',
path='Qwen/Qwen1.5-7B-Chat',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='llama-3-70b-instruct-hf',
# path='meta-llama/Meta-Llama-3-70B-Instruct',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=4),
# stop_words=['<|end_of_text|>', '<|eot_id|>'],
# ),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='yi-1.5-34b-chat-hf',
# path='01-ai/Yi-1.5-34B-Chat',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=2),
# ),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='qwen1.5-72b-chat-hf',
# path='Qwen/Qwen1.5-72B-Chat',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=8),
# )
]

datasets = [*subjective_datasets]

# -------------Evalation Stage ----------------------------------------

## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
temperature=0,
)]

gpt4 = dict(
abbr='gpt4-turbo',
type=OpenAI,
path='gpt-4-0409-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=4096,
batch_size=4,
retry=20,
temperature=1,
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions

claude = dict(abbr='HaiKu',
type=Claude,
path='claude-2',
key='YOUR_CLAUDE_KEY',
query_per_second=1,
max_out_len=2048, max_seq_len=2048, batch_size=2,
)
## single evaluation
# eval = dict(
# partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
# runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)),
# )
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'),
runner=dict(
type=SlurmSequentialRunner,
max_num_workers=64,
quotatype='reserved',
partition='llmeval',
task=dict(type=OpenICLInferTask)),
)

eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='m2n', # m个模型 与 n个模型进行对战
infer_order='random',
# 在m2n模式下,需要指定base_models和compare_models,将会对base_models和compare_models生成对应的两两pair(去重且不会与自身进行比较)
base_models = [*llama2_models, gpt4, claude], # 用于对比的基线模型
compare_models = models, # 待评测模型
judge_models=judge_models
),
runner=dict(
type=LocalRunner,
# partition='llmeval',
# quotatype='auto',
max_num_workers=3,
task=dict(
type=SubjectiveEvalTask
)),
given_pred = [{'abbr':'gpt4-turbo', 'path':'./data/WildBench/gpt4'},
{'abbr': 'llama-2-70b-chat-hf', 'path':'./data/WildBench/llama2-70b'},
{'abbr': 'HaiKu', 'path':'./data/WildBench/claude'},
{'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/WildBench/llama2-70b'},
{'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/WildBench/llama2-70b'}]
)

summarizer = dict(type=WildBenchPairSummarizer)

work_dir = 'outputs/wildbench/'
Loading

0 comments on commit 1fa62c4

Please sign in to comment.