Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HVU baselines #287

Merged
merged 15 commits into from
Oct 30, 2020
27 changes: 20 additions & 7 deletions configs/recognition/tsn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -123,19 +123,32 @@ In data benchmark, we compare:
| [tsn_r50_320p_1x1x8_150e_activitynet_video_flow](/configs/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_video_flow.py) | 340x256 | 8x2 | ResNet50 | Kinetics400 | 58.70 | 84.72 | 5780 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_video_flow/tsn_r50_320p_1x1x8_150e_activitynet_video_flow_20200804-13313f52.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_video_flow/tsn_r50_320p_1x1x8_150e_activitynet_video_flow_20200804.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_video_flow/tsn_r50_320p_1x1x8_150e_activitynet_video_flow_20200804.json) |
| [tsn_r50_320p_1x1x8_150e_activitynet_clip_flow](/configs/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_clip_flow.py) | 340x256 | 8x2 | ResNet50 | Kinetics400 | 59.51 | 82.69 | 5780 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_clip_flow/tsn_r50_320p_1x1x8_150e_activitynet_clip_flow_20200804-8622cf38.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_clip_flow/tsn_r50_320p_1x1x8_150e_activitynet_clip_flow_20200804.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_320p_1x1x8_150e_activitynet_clip_flow/tsn_r50_320p_1x1x8_150e_activitynet_clip_flow_20200804.json) |

### HVU

| config[1] | tag category | resolution | gpus | backbone | pretrain | mAP | HATNet[2] | HATNet-multi[2] | ckpt | log | json |
| :----------------------------------------------------------: | :----------: | :------------: | :--: | :------: | :------: | :--: | :-------: | :-------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| [tsn_r18_1x1x8_100e_hvu_action_rgb](/configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_action_rgb.py) | action | short-side 256 | 8x2 | ResNet18 | ImageNet | 57.5 | 51.8 | 53.5 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/action/tsn_r18_1x1x8_100e_hvu_action_rgb_20201027-011b282b.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/action/tsn_r18_1x1x8_100e_hvu_action_rgb_20201027.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/action/tsn_r18_1x1x8_100e_hvu_action_rgb_20201027.json) |
| [tsn_r18_1x1x8_100e_hvu_scene_rgb](/configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_scene_rgb.py) | scene | short-side 256 | 8 | ResNet18 | ImageNet | 55.2 | 55.8 | 57.2 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/scene/tsn_r18_1x1x8_100e_hvu_scene_rgb_20201027-00e5748d.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/scene/tsn_r18_1x1x8_100e_hvu_scene_rgb_20201027.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/scene/tsn_r18_1x1x8_100e_hvu_scene_rgb_20201027.json) |
| [tsn_r18_1x1x8_100e_hvu_object_rgb](/configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_object_rgb.py) | object | short-side 256 | 8 | ResNet18 | ImageNet | 45.7 | 34.2 | 35.1 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/object/tsn_r18_1x1x8_100e_hvu_object_rgb_20201027-ec8e1083.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/object/tsn_r18_1x1x8_100e_hvu_object_rgb_20201027.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/object/tsn_r18_1x1x8_100e_hvu_object_rgb_20201027.json) |
| [tsn_r18_1x1x8_100e_hvu_event_rgb](/configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_event_rgb.py) | event | short-side 256 | 8 | ResNet18 | ImageNet | 63.7 | 38.5 | 39.8 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/event/tsn_r18_1x1x8_100e_hvu_event_rgb_20201027-dea8cd71.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/event/tsn_r18_1x1x8_100e_hvu_event_rgb_20201027.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/event/tsn_r18_1x1x8_100e_hvu_event_rgb_20201027.json) |
| [tsn_r18_1x1x8_100e_hvu_concept_rgb](/configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_concept_rgb.py) | concept | short-side 256 | 8 | ResNet18 | ImageNet | 47.5 | 26.1 | 27.3 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/concept/tsn_r18_1x1x8_100e_hvu_concept_rgb_20201027-fc1dd8e3.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/concept/tsn_r18_1x1x8_100e_hvu_concept_rgb_20201027.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/concept/tsn_r18_1x1x8_100e_hvu_concept_rgb_20201027.json) |
| [tsn_r18_1x1x8_100e_hvu_attribute_rgb](/configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_attribute_rgb.py) | attribute | short-side 256 | 8 | ResNet18 | ImageNet | 46.1 | 33.6 | 34.9 | [ckpt](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/attribute/tsn_r18_1x1x8_100e_hvu_attribute_rgb_20201027-0b3b49d2.pth) | [log](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/attribute/tsn_r18_1x1x8_100e_hvu_attribute_rgb_20201027.log) | [json](https://download.openmmlab.com/mmaction/recognition/tsn/hvu/attribute/tsn_r18_1x1x8_100e_hvu_attribute_rgb_20201027.json) |
| - | Overall | short-side 256 | - | ResNet18 | ImageNet | 52.6 | 40.0 | 41.3 | - | - | - |

[1] For simplicity, we train a specific model for each tag category as the baselines for HVU.

[2] The performance of HATNet and HATNet-multi are from the paper [Large Scale Holistic Video Understanding](https://pages.iai.uni-bonn.de/gall_juergen/download/HVU_eccv20.pdf). The proposed HATNet is a 2 branch Convolution Network (one 2D branch, one 3D branch) and share the same backbone(ResNet18) with us. The inputs of HATNet are 16 or 32 frames long video clips (which is much larger than us), while the input resolution is coarser (112 instead of 224). HATNet is trained on each individual task (each tag category) while HATNet-multi is trained on multiple tasks. Since there is no released codes or models for the HATNet, we just include the performance reported by the original paper.

Notes:

1. The **gpus** indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide are used for 8 gpus as default.
According to the [Linear Scaling Rule](https://arxiv.org/abs/1706.02677), you may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU,
e.g., lr=0.01 for 4 GPUs * 2 video/gpu and lr=0.08 for 16 GPUs * 4 video/gpu.
According to the [Linear Scaling Rule](https://arxiv.org/abs/1706.02677), you may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU,
e.g., lr=0.01 for 4 GPUs * 2 video/gpu and lr=0.08 for 16 GPUs * 4 video/gpu.
2. The **inference_time** is got by this [benchmark script](/tools/analysis/benchmark.py), where we use the sampling frames strategy of the test setting and only care about the model inference time,
not including the IO time and pre-processing time. For each setting, we use 1 gpu and set batch size (videos per gpu) to 1 to calculate the inference time.
not including the IO time and pre-processing time. For each setting, we use 1 gpu and set batch size (videos per gpu) to 1 to calculate the inference time.
3. The values in columns named after "reference" are the results got by training on the original repo, using the same model settings.

For more details on data preparation, you can refer to [preparing_ucf101](/tools/data/ucf101/preparing_ucf101.md),
[preparing_kinetics400](/tools/data/kinetics400/preparing_kinetics400.md), [preparing_sthv1](/tools/data/sthv1/preparing_sthv1.md),
[preparing_sthv2](/tools/data/sthv2/preparing_sthv2.md), [preparing_mit](/tools/data/mit/preparing_mit.md),
[preparing_mmit](/tools/data/mmit/preparing_mmit.md).
For more details on data preparation, you can refer to [preparing_ucf101](/tools/data/ucf101/preparing_ucf101.md), [preparing_kinetics400](/tools/data/kinetics400/preparing_kinetics400.md), [preparing_sthv1](/tools/data/sthv1/preparing_sthv1.md), [preparing_sthv2](/tools/data/sthv2/preparing_sthv2.md), [preparing_mit](/tools/data/mit/preparing_mit.md), [preparing_mmit](/tools/data/mmit/preparing_mmit.md), [preparing_hvu](/tools/data/hvu/preparing_hvu.md).

## Train

Expand Down
126 changes: 126 additions & 0 deletions configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_action_rgb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# model settings
category_nums = dict(
action=729, attribute=117, concept=291, event=69, object=1679, scene=248)
target_cate = 'action'

model = dict(
type='Recognizer2D',
backbone=dict(
type='ResNet',
pretrained='torchvision://resnet18',
depth=18,
norm_eval=False),
cls_head=dict(
type='TSNHead',
num_classes=category_nums[target_cate],
in_channels=512,
spatial_type='avg',
multi_class=True,
consensus=dict(type='AvgConsensus', dim=1),
dropout_ratio=0.4,
init_std=0.01))
# model training and testing settings
train_cfg = None
test_cfg = dict(average_clips=None)
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'data/hvu/rawframes_train'
data_root_val = 'data/hvu/rawframes_val'
ann_file_train = f'data/hvu/hvu_{target_cate}_train.json'
ann_file_val = f'data/hvu/hvu_{target_cate}_val.json'
ann_file_test = f'data/hvu/hvu_{target_cate}_val.json'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='RandomResizedCrop'),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=8,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=256),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='ThreeCrop', crop_size=256),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
data = dict(
videos_per_gpu=32,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
pipeline=train_pipeline,
multi_class=True,
num_classes=category_nums[target_cate],
filename_tmpl='img_{:05d}.jpg'),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
pipeline=val_pipeline,
multi_class=True,
num_classes=category_nums[target_cate],
filename_tmpl='img_{:05d}.jpg'),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=data_root_val,
pipeline=test_pipeline,
multi_class=True,
num_classes=category_nums[target_cate],
filename_tmpl='img_{:05d}.jpg'))
# optimizer
optimizer = dict(
type='SGD', lr=0.01, momentum=0.9,
weight_decay=0.0001) # this lr is used for 8 gpus
optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[40, 80])
total_epochs = 100
checkpoint_config = dict(interval=1)
evaluation = dict(
interval=2, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
log_config = dict(
interval=20, hooks=[
dict(type='TextLoggerHook'),
])
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/tsn_r18_1x1x8_100e_hvu_{target_cate}_rgb/'
load_from = None
resume_from = None
workflow = [('train', 1)]
126 changes: 126 additions & 0 deletions configs/recognition/tsn/hvu/tsn_r18_1x1x8_100e_hvu_attribute_rgb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# model settings
category_nums = dict(
action=729, attribute=117, concept=291, event=69, object=1679, scene=248)
target_cate = 'attribute'

model = dict(
type='Recognizer2D',
backbone=dict(
type='ResNet',
pretrained='torchvision://resnet18',
depth=18,
norm_eval=False),
cls_head=dict(
type='TSNHead',
num_classes=category_nums[target_cate],
in_channels=512,
spatial_type='avg',
multi_class=True,
consensus=dict(type='AvgConsensus', dim=1),
dropout_ratio=0.4,
init_std=0.01))
# model training and testing settings
train_cfg = None
test_cfg = dict(average_clips=None)
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'data/hvu/rawframes_train'
data_root_val = 'data/hvu/rawframes_val'
ann_file_train = f'data/hvu/hvu_{target_cate}_train.json'
ann_file_val = f'data/hvu/hvu_{target_cate}_val.json'
ann_file_test = f'data/hvu/hvu_{target_cate}_val.json'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='RandomResizedCrop'),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=8,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=256),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='ThreeCrop', crop_size=256),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
data = dict(
videos_per_gpu=32,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
pipeline=train_pipeline,
multi_class=True,
num_classes=category_nums[target_cate],
filename_tmpl='img_{:05d}.jpg'),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
pipeline=val_pipeline,
multi_class=True,
num_classes=category_nums[target_cate],
filename_tmpl='img_{:05d}.jpg'),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=data_root_val,
pipeline=test_pipeline,
multi_class=True,
num_classes=category_nums[target_cate],
filename_tmpl='img_{:05d}.jpg'))
# optimizer
optimizer = dict(
type='SGD', lr=0.01, momentum=0.9,
weight_decay=0.0001) # this lr is used for 8 gpus
optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[40, 80])
total_epochs = 100
checkpoint_config = dict(interval=1)
evaluation = dict(
interval=2, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
kennymckormick marked this conversation as resolved.
Show resolved Hide resolved
log_config = dict(
interval=20, hooks=[
dict(type='TextLoggerHook'),
])
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/tsn_r18_1x1x8_100e_hvu_{target_cate}_rgb/'
load_from = None
resume_from = None
workflow = [('train', 1)]
Loading