-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
Copy pathbase_dense_head.py
526 lines (457 loc) · 22.7 KB
/
base_dense_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
import torch
from mmcv.cnn.utils.weight_init import constant_init
from mmcv.ops import batched_nms
from mmcv.runner import BaseModule, force_fp32
from mmdet.core.utils import filter_scores_and_topk, select_single_mlvl
class BaseDenseHead(BaseModule, metaclass=ABCMeta):
"""Base class for DenseHeads."""
def __init__(self, init_cfg=None):
super(BaseDenseHead, self).__init__(init_cfg)
def init_weights(self):
super(BaseDenseHead, self).init_weights()
# avoid init_cfg overwrite the initialization of `conv_offset`
for m in self.modules():
# DeformConv2dPack, ModulatedDeformConv2dPack
if hasattr(m, 'conv_offset'):
constant_init(m.conv_offset, 0)
@abstractmethod
def loss(self, **kwargs):
"""Compute losses of the head."""
pass
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def get_bboxes(self,
cls_scores,
bbox_preds,
score_factors=None,
img_metas=None,
cfg=None,
rescale=False,
with_nms=True,
**kwargs):
"""Transform network outputs of a batch into bbox results.
Note: When score_factors is not None, the cls_scores are
usually multiplied by it then obtain the real score used in NMS,
such as CenterNess in FCOS, IoU branch in ATSS.
Args:
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
score_factors (list[Tensor], Optional): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, num_priors * 1, H, W). Default None.
img_metas (list[dict], Optional): Image meta info. Default None.
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
if None, test_cfg would be used. Default None.
rescale (bool): If True, return boxes in original image space.
Default False.
with_nms (bool): If True, do nms before return boxes.
Default True.
Returns:
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is an (n, 5) tensor, where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1. The second item is a
(n,) tensor where each item is the predicted class label of
the corresponding box.
"""
assert len(cls_scores) == len(bbox_preds)
if score_factors is None:
# e.g. Retina, FreeAnchor, Foveabox, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, AutoAssign, etc.
with_score_factors = True
assert len(cls_scores) == len(score_factors)
num_levels = len(cls_scores)
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device)
result_list = []
for img_id in range(len(img_metas)):
img_meta = img_metas[img_id]
cls_score_list = select_single_mlvl(cls_scores, img_id)
bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
if with_score_factors:
score_factor_list = select_single_mlvl(score_factors, img_id)
else:
score_factor_list = [None for _ in range(num_levels)]
results = self._get_bboxes_single(cls_score_list, bbox_pred_list,
score_factor_list, mlvl_priors,
img_meta, cfg, rescale, with_nms,
**kwargs)
result_list.append(results)
return result_list
def _get_bboxes_single(self,
cls_score_list,
bbox_pred_list,
score_factor_list,
mlvl_priors,
img_meta,
cfg,
rescale=False,
with_nms=True,
**kwargs):
"""Transform outputs of a single image into bbox predictions.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image, each item has shape
(num_priors * 1, H, W).
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid. In all
anchor-based methods, it has shape (num_priors, 4). In
all anchor-free methods, it has shape (num_priors, 2)
when `with_stride=True`, otherwise it still has shape
(num_priors, 4).
img_meta (dict): Image meta info.
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before return boxes.
Default: True.
Returns:
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
is False and mlvl_score_factor is None, return mlvl_bboxes and
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
mlvl_score_factor. Usually with_nms is False is used for aug
test. If with_nms is True, then return the following format
- det_bboxes (Tensor): Predicted bboxes with shape \
[num_bboxes, 5], where the first 4 columns are bounding \
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
column are scores between 0 and 1.
- det_labels (Tensor): Predicted labels of the corresponding \
box with shape [num_bboxes].
"""
if score_factor_list[0] is None:
# e.g. Retina, FreeAnchor, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, etc.
with_score_factors = True
cfg = self.test_cfg if cfg is None else cfg
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
mlvl_bboxes = []
mlvl_scores = []
mlvl_labels = []
if with_score_factors:
mlvl_score_factors = []
else:
mlvl_score_factors = None
for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
enumerate(zip(cls_score_list, bbox_pred_list,
score_factor_list, mlvl_priors)):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
if with_score_factors:
score_factor = score_factor.permute(1, 2,
0).reshape(-1).sigmoid()
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
scores = cls_score.softmax(-1)[:, :-1]
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
results = filter_scores_and_topk(
scores, cfg.score_thr, nms_pre,
dict(bbox_pred=bbox_pred, priors=priors))
scores, labels, keep_idxs, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
if with_score_factors:
score_factor = score_factor[keep_idxs]
bboxes = self.bbox_coder.decode(
priors, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
if with_score_factors:
mlvl_score_factors.append(score_factor)
return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes,
img_meta['scale_factor'], cfg, rescale,
with_nms, mlvl_score_factors, **kwargs)
def _bbox_post_process(self,
mlvl_scores,
mlvl_labels,
mlvl_bboxes,
scale_factor,
cfg,
rescale=False,
with_nms=True,
mlvl_score_factors=None,
**kwargs):
"""bbox post-processing method.
The boxes would be rescaled to the original image scale and do
the nms operation. Usually `with_nms` is False is used for aug test.
Args:
mlvl_scores (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_bboxes, ).
mlvl_labels (list[Tensor]): Box class labels from all scale
levels of a single image, each item has shape
(num_bboxes, ).
mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale
levels of a single image, each item has shape (num_bboxes, 4).
scale_factor (ndarray, optional): Scale factor of the image arange
as (w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before return boxes.
Default: True.
mlvl_score_factors (list[Tensor], optional): Score factor from
all scale levels of a single image, each item has shape
(num_bboxes, ). Default: None.
Returns:
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
is False and mlvl_score_factor is None, return mlvl_bboxes and
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
mlvl_score_factor. Usually with_nms is False is used for aug
test. If with_nms is True, then return the following format
- det_bboxes (Tensor): Predicted bboxes with shape \
[num_bboxes, 5], where the first 4 columns are bounding \
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
column are scores between 0 and 1.
- det_labels (Tensor): Predicted labels of the corresponding \
box with shape [num_bboxes].
"""
assert len(mlvl_scores) == len(mlvl_bboxes) == len(mlvl_labels)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
mlvl_labels = torch.cat(mlvl_labels)
if mlvl_score_factors is not None:
# TODO: Add sqrt operation in order to be consistent with
# the paper.
mlvl_score_factors = torch.cat(mlvl_score_factors)
mlvl_scores = mlvl_scores * mlvl_score_factors
if with_nms:
if mlvl_bboxes.numel() == 0:
det_bboxes = torch.cat([mlvl_bboxes, mlvl_scores[:, None]], -1)
return det_bboxes, mlvl_labels
det_bboxes, keep_idxs = batched_nms(mlvl_bboxes, mlvl_scores,
mlvl_labels, cfg.nms)
det_bboxes = det_bboxes[:cfg.max_per_img]
det_labels = mlvl_labels[keep_idxs][:cfg.max_per_img]
return det_bboxes, det_labels
else:
return mlvl_bboxes, mlvl_scores, mlvl_labels
def forward_train(self,
x,
img_metas,
gt_bboxes,
gt_labels=None,
gt_bboxes_ignore=None,
proposal_cfg=None,
**kwargs):
"""
Args:
x (list[Tensor]): Features from FPN.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
proposal_cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used
Returns:
tuple:
losses: (dict[str, Tensor]): A dictionary of loss components.
proposal_list (list[Tensor]): Proposals of each image.
"""
outs = self(x)
if gt_labels is None:
loss_inputs = outs + (gt_bboxes, img_metas)
else:
loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
if proposal_cfg is None:
return losses
else:
proposal_list = self.get_bboxes(
*outs, img_metas=img_metas, cfg=proposal_cfg)
return losses, proposal_list
def simple_test(self, feats, img_metas, rescale=False):
"""Test function without test-time augmentation.
Args:
feats (tuple[torch.Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is ``bboxes`` with shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
The shape of the second tensor in the tuple is ``labels``
with shape (n, ).
"""
return self.simple_test_bboxes(feats, img_metas, rescale=rescale)
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def onnx_export(self,
cls_scores,
bbox_preds,
score_factors=None,
img_metas=None,
with_nms=True):
"""Transform network output for a batch into bbox predictions.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
with shape (N, num_points * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_points * 4, H, W).
score_factors (list[Tensor]): score_factors for each s
cale level with shape (N, num_points * 1, H, W).
Default: None.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc. Default: None.
with_nms (bool): Whether apply nms to the bboxes. Default: True.
Returns:
tuple[Tensor, Tensor] | list[tuple]: When `with_nms` is True,
it is tuple[Tensor, Tensor], first tensor bboxes with shape
[N, num_det, 5], 5 arrange as (x1, y1, x2, y2, score)
and second element is class labels of shape [N, num_det].
When `with_nms` is False, first tensor is bboxes with
shape [N, num_det, 4], second tensor is raw score has
shape [N, num_det, num_classes].
"""
assert len(cls_scores) == len(bbox_preds)
num_levels = len(cls_scores)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=bbox_preds[0].dtype,
device=bbox_preds[0].device)
mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)]
mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)]
assert len(
img_metas
) == 1, 'Only support one input image while in exporting to ONNX'
img_shape = img_metas[0]['img_shape_for_onnx']
cfg = self.test_cfg
assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors)
device = cls_scores[0].device
batch_size = cls_scores[0].shape[0]
# convert to tensor to keep tracing
nms_pre_tensor = torch.tensor(
cfg.get('nms_pre', -1), device=device, dtype=torch.long)
# e.g. Retina, FreeAnchor, etc.
if score_factors is None:
with_score_factors = False
mlvl_score_factor = [None for _ in range(num_levels)]
else:
# e.g. FCOS, PAA, ATSS, etc.
with_score_factors = True
mlvl_score_factor = [
score_factors[i].detach() for i in range(num_levels)
]
mlvl_score_factors = []
mlvl_batch_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred, score_factors, priors in zip(
mlvl_cls_scores, mlvl_bbox_preds, mlvl_score_factor,
mlvl_priors):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(0, 2, 3,
1).reshape(batch_size, -1,
self.cls_out_channels)
if self.use_sigmoid_cls:
scores = scores.sigmoid()
nms_pre_score = scores
else:
scores = scores.softmax(-1)
nms_pre_score = scores
if with_score_factors:
score_factors = score_factors.permute(0, 2, 3, 1).reshape(
batch_size, -1).sigmoid()
bbox_pred = bbox_pred.permute(0, 2, 3,
1).reshape(batch_size, -1, 4)
priors = priors.expand(batch_size, -1, priors.size(-1))
# Get top-k predictions
from mmdet.core.export import get_k_for_topk
nms_pre = get_k_for_topk(nms_pre_tensor, bbox_pred.shape[1])
if nms_pre > 0:
if with_score_factors:
nms_pre_score = (nms_pre_score * score_factors[..., None])
else:
nms_pre_score = nms_pre_score
# Get maximum scores for foreground classes.
if self.use_sigmoid_cls:
max_scores, _ = nms_pre_score.max(-1)
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
max_scores, _ = nms_pre_score[..., :-1].max(-1)
_, topk_inds = max_scores.topk(nms_pre)
batch_inds = torch.arange(
batch_size, device=bbox_pred.device).view(
-1, 1).expand_as(topk_inds).long()
# Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501
transformed_inds = bbox_pred.shape[1] * batch_inds + topk_inds
priors = priors.reshape(
-1, priors.size(-1))[transformed_inds, :].reshape(
batch_size, -1, priors.size(-1))
bbox_pred = bbox_pred.reshape(-1,
4)[transformed_inds, :].reshape(
batch_size, -1, 4)
scores = scores.reshape(
-1, self.cls_out_channels)[transformed_inds, :].reshape(
batch_size, -1, self.cls_out_channels)
if with_score_factors:
score_factors = score_factors.reshape(
-1, 1)[transformed_inds].reshape(batch_size, -1)
bboxes = self.bbox_coder.decode(
priors, bbox_pred, max_shape=img_shape)
mlvl_batch_bboxes.append(bboxes)
mlvl_scores.append(scores)
if with_score_factors:
mlvl_score_factors.append(score_factors)
batch_bboxes = torch.cat(mlvl_batch_bboxes, dim=1)
batch_scores = torch.cat(mlvl_scores, dim=1)
if with_score_factors:
batch_score_factors = torch.cat(mlvl_score_factors, dim=1)
# Replace multiclass_nms with ONNX::NonMaxSuppression in deployment
from mmdet.core.export import add_dummy_nms_for_onnx
if not self.use_sigmoid_cls:
batch_scores = batch_scores[..., :self.num_classes]
if with_score_factors:
batch_scores = batch_scores * (batch_score_factors.unsqueeze(2))
if with_nms:
max_output_boxes_per_class = cfg.nms.get(
'max_output_boxes_per_class', 200)
iou_threshold = cfg.nms.get('iou_threshold', 0.5)
score_threshold = cfg.score_thr
nms_pre = cfg.get('deploy_nms_pre', -1)
return add_dummy_nms_for_onnx(batch_bboxes, batch_scores,
max_output_boxes_per_class,
iou_threshold, score_threshold,
nms_pre, cfg.max_per_img)
else:
return batch_bboxes, batch_scores