-
Notifications
You must be signed in to change notification settings - Fork 2.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
the miou of test set #139
Comments
Hi @renmmmmmm |
The link is invalid, can you provide a new link? |
MeowZheng
pushed a commit
that referenced
this issue
Feb 3, 2023
wjkim81
pushed a commit
to wjkim81/mmsegmentation
that referenced
this issue
Dec 3, 2023
nahidnazifi87
pushed a commit
to nahidnazifi87/mmsegmentation_playground
that referenced
this issue
Apr 5, 2024
…#2554) ## Motivation Add REFUGE datasets Old PR: open-mmlab#2420 --------- Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
how can i get the value of miou from cityscape test set?when i change the code ,and run test.py ,i meet the bug?how i slove it ?
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_root=data_root,
img_dir='leftImg8bit/train',
ann_dir='gtFine/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root=data_root,
img_dir='leftImg8bit/val',
ann_dir='gtFine/val',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
img_dir='leftImg8bit/test',
ann_dir='gtFine/test',
pipeline=test_pipeline))
ego vehicle | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0448
rectification | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.01 0.00 0.00 0.18 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0111
out of roi | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.03 0.00 0.00 0.23 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.17 0.01 0.08 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0151
classes IoU nIoU
road : nan nan
sidewalk : nan nan
building : nan nan
wall : nan nan
fence : nan nan
pole : nan nan
traffic light : nan nan
traffic sign : nan nan
vegetation : nan nan
terrain : nan nan
sky : nan nan
person : nan nan
rider : nan nan
car : nan nan
truck : nan nan
bus : nan nan
train : nan nan
motorcycle : nan nan
bicycle : nan nan
Score Average : nan nan
categories IoU nIoU
flat : nan nan
construction : nan nan
object : nan nan
nature : nan nan
sky : nan nan
human : nan nan
vehicle : nan nan
Score Average : nan nan
/home/rss/tmp/mmsegmentation-master/mmseg/core/evaluation/mean_iou.py:66: RuntimeWarning: invalid value encountered in double_scalars
all_acc = total_area_intersect.sum() / total_area_label.sum()
/home/rss/tmp/mmsegmentation-master/mmseg/core/evaluation/mean_iou.py:67: RuntimeWarning: invalid value encountered in true_divide
acc = total_area_intersect / total_area_label
/home/rss/tmp/mmsegmentation-master/mmseg/core/evaluation/mean_iou.py:68: RuntimeWarning: invalid value encountered in true_divide
iou = total_area_intersect / total_area_union
/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:280: RuntimeWarning: Mean of empty slice
iou_str = '{:.2f}'.format(np.nanmean(iou) * 100)
/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:281: RuntimeWarning: Mean of empty slice
acc_str = '{:.2f}'.format(np.nanmean(acc) * 100)
per class results:
Class IoU Acc
road nan nan
sidewalk nan nan
building nan nan
wall nan nan
fence nan nan
pole nan nan
traffic light nan nan
traffic sign nan nan
vegetation nan nan
terrain nan nan
sky nan nan
person nan nan
rider nan nan
car nan nan
truck nan nan
bus nan nan
train nan nan
motorcycle nan nan
bicycle nan nan
Summary:
Scope mIoU mAcc aAcc
global nan nan nan
/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:287: RuntimeWarning: Mean of empty slice
eval_results['mIoU'] = np.nanmean(iou)
/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:288: RuntimeWarning: Mean of empty slice
eval_results['mAcc'] = np.nanmean(acc)
The text was updated successfully, but these errors were encountered: