Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

the miou of test set #139

Closed
renmmmmmm opened this issue Sep 20, 2020 · 2 comments
Closed

the miou of test set #139

renmmmmmm opened this issue Sep 20, 2020 · 2 comments

Comments

@renmmmmmm
Copy link

how can i get the value of miou from cityscape test set?when i change the code ,and run test.py ,i meet the bug?how i slove it ?
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_root=data_root,
img_dir='leftImg8bit/train',
ann_dir='gtFine/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root=data_root,
img_dir='leftImg8bit/val',
ann_dir='gtFine/val',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
img_dir='leftImg8bit/test',
ann_dir='gtFine/test',
pipeline=test_pipeline))


          |  u   |  e   |  r   |  o   |  s   |  d   |  g   |  r   |  s   |  p   |  r   |  b   |  w   |  f   |  g   |  b   |  t   |  p   |  p   |  t   |  t   |  v   |  t   |  s   |  p   |  r   |  c   |  t   |  b   |  c   |  t   |  t   |  m   |  b   | Prior |

unlabeled | 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.38   0.05   0.00   0.00   0.20   0.00   0.01   0.00   0.00   0.00   0.01   0.00   0.00   0.01   0.17   0.01   0.04   0.01   0.00   0.08   0.00   0.00   0.00   0.00   0.00   0.00   0.00  0.9290 

ego vehicle | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0448
rectification | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.01 0.00 0.00 0.18 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0111
out of roi | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.03 0.00 0.00 0.23 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.17 0.01 0.08 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0151


classes IoU nIoU

road : nan nan
sidewalk : nan nan
building : nan nan
wall : nan nan
fence : nan nan
pole : nan nan
traffic light : nan nan
traffic sign : nan nan
vegetation : nan nan
terrain : nan nan
sky : nan nan
person : nan nan
rider : nan nan
car : nan nan
truck : nan nan
bus : nan nan
train : nan nan
motorcycle : nan nan
bicycle : nan nan

Score Average : nan nan

categories IoU nIoU

flat : nan nan
construction : nan nan
object : nan nan
nature : nan nan
sky : nan nan
human : nan nan
vehicle : nan nan

Score Average : nan nan

/home/rss/tmp/mmsegmentation-master/mmseg/core/evaluation/mean_iou.py:66: RuntimeWarning: invalid value encountered in double_scalars
all_acc = total_area_intersect.sum() / total_area_label.sum()
/home/rss/tmp/mmsegmentation-master/mmseg/core/evaluation/mean_iou.py:67: RuntimeWarning: invalid value encountered in true_divide
acc = total_area_intersect / total_area_label
/home/rss/tmp/mmsegmentation-master/mmseg/core/evaluation/mean_iou.py:68: RuntimeWarning: invalid value encountered in true_divide
iou = total_area_intersect / total_area_union
/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:280: RuntimeWarning: Mean of empty slice
iou_str = '{:.2f}'.format(np.nanmean(iou) * 100)
/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:281: RuntimeWarning: Mean of empty slice
acc_str = '{:.2f}'.format(np.nanmean(acc) * 100)
per class results:
Class IoU Acc
road nan nan
sidewalk nan nan
building nan nan
wall nan nan
fence nan nan
pole nan nan
traffic light nan nan
traffic sign nan nan
vegetation nan nan
terrain nan nan
sky nan nan
person nan nan
rider nan nan
car nan nan
truck nan nan
bus nan nan
train nan nan
motorcycle nan nan
bicycle nan nan
Summary:
Scope mIoU mAcc aAcc
global nan nan nan

/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:287: RuntimeWarning: Mean of empty slice
eval_results['mIoU'] = np.nanmean(iou)
/home/rss/tmp/mmsegmentation-master/mmseg/datasets/custom.py:288: RuntimeWarning: Mean of empty slice
eval_results['mAcc'] = np.nanmean(acc)

@xvjiarui
Copy link
Collaborator

Hi @renmmmmmm
You need to submit it to the evaluation server. Please refer to the section 5 here for details.

@RoyZhDec
Copy link

RoyZhDec commented Dec 6, 2021

Hi @renmmmmmm You need to submit it to the evaluation server. Please refer to the section 5 here for details.

The link is invalid, can you provide a new link?

MeowZheng pushed a commit that referenced this issue Feb 3, 2023
## Motivation 
Add REFUGE datasets
Old PR: #2420

---------

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
wjkim81 pushed a commit to wjkim81/mmsegmentation that referenced this issue Dec 3, 2023
nahidnazifi87 pushed a commit to nahidnazifi87/mmsegmentation_playground that referenced this issue Apr 5, 2024
…#2554)

## Motivation 
Add REFUGE datasets
Old PR: open-mmlab#2420

---------

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants