We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I was running training for 2 days and it stoped without an error. I have reaced 31 epoch for celeba problem.
nohup python -u train.py --problem celeba --image_size 256 --n_level 6 --depth 32 --flow_permutation 2 --flow_coupling 0 --seed 0 --learntop --lr 0.001 --n_bits_x 5 --data_dir /mnt/celeba/mnt/host/celeba-reshard-tfr/ &
Updated os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1', maybe it will be more verbose this time.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
cat logs/train.txt {"n_batch_init": 256, "flow_coupling": 0, "weight_y": 0.0, "restore_path": "", "verbose": false, "n_batch_test": 50, "n_batch_train": 64, "anchor_size": 32, "epochs": 1000000, "epochs_warmup": 10, "n_bits_x": 5, "rnd_crop": false, "category": "", "depth": 32, "learntop": true, "n_bins": 32.0, "beta1": 0.9, "n_train": 50000, "n_test": 3000, "seed": 0, "logdir": "./logs", "lr": 0.001, "full_test_its": 3000, "ycond": false, "n_levels": 6, "fmap": 1, "dal": 1, "top_shape": [4, 4, 384], "local_batch_test": 1, "local_batch_train": 1, "optimizer": "adamax", "polyak_epochs": 1, "pmap": 16, "weight_decay": 1.0, "n_sample": 1, "test_its": 47, "image_size": 256, "data_dir": "/mnt/celeba/mnt/host/celeba-reshard-tfr/", "train_its": 782, "epochs_full_sample": 50, "n_y": 1, "width": 512, "problem": "celeba", "epochs_full_valid": 50, "local_batch_init": 4, "direct_iterator": true, "gradient_checkpointing": 1, "flow_permutation": 2} {"pred_loss": "1.0000", "train_time": 4076, "bits_x": "2.0117", "n_processed": 50048, "loss": "2.0117", "epoch": 1, "bits_y": "0.0000", "n_images": 782} {"pred_loss": "1.0000", "train_time": 7960, "bits_x": "1.4431", "n_processed": 100096, "loss": "1.4431", "epoch": 2, "bits_y": "0.0000", "n_images": 1564} {"pred_loss": "1.0000", "train_time": 11833, "bits_x": "1.3894", "n_processed": 150144, "loss": "1.3894", "epoch": 3, "bits_y": "0.0000", "n_images": 2346} {"pred_loss": "1.0000", "train_time": 15698, "bits_x": "1.3369", "n_processed": 200192, "loss": "1.3369", "epoch": 4, "bits_y": "0.0000", "n_images": 3128} {"pred_loss": "1.0000", "train_time": 19555, "bits_x": "1.3023", "n_processed": 250240, "loss": "1.3023", "epoch": 5, "bits_y": "0.0000", "n_images": 3910} {"pred_loss": "1.0000", "train_time": 23406, "bits_x": "1.2827", "n_processed": 300288, "loss": "1.2827", "epoch": 6, "bits_y": "0.0000", "n_images": 4692} {"pred_loss": "1.0000", "train_time": 27373, "bits_x": "1.2652", "n_processed": 350336, "loss": "1.2652", "epoch": 7, "bits_y": "0.0000", "n_images": 5474} {"pred_loss": "1.0000", "train_time": 31235, "bits_x": "1.2522", "n_processed": 400384, "loss": "1.2522", "epoch": 8, "bits_y": "0.0000", "n_images": 6256} {"pred_loss": "1.0000", "train_time": 35093, "bits_x": "1.2383", "n_processed": 450432, "loss": "1.2383", "epoch": 9, "bits_y": "0.0000", "n_images": 7038} {"pred_loss": "1.0000", "train_time": 38955, "bits_x": "1.2361", "n_processed": 500480, "loss": "1.2361", "epoch": 10, "bits_y": "0.0000", "n_images": 7820} {"pred_loss": "1.0000", "train_time": 42828, "bits_x": "1.2206", "n_processed": 550528, "loss": "1.2206", "epoch": 11, "bits_y": "0.0000", "n_images": 8602} {"pred_loss": "1.0000", "train_time": 46698, "bits_x": "1.2128", "n_processed": 600576, "loss": "1.2128", "epoch": 12, "bits_y": "0.0000", "n_images": 9384} {"pred_loss": "1.0000", "train_time": 50564, "bits_x": "1.1951", "n_processed": 650624, "loss": "1.1951", "epoch": 13, "bits_y": "0.0000", "n_images": 10166} {"pred_loss": "1.0000", "train_time": 54421, "bits_x": "1.1983", "n_processed": 700672, "loss": "1.1983", "epoch": 14, "bits_y": "0.0000", "n_images": 10948} {"pred_loss": "1.0000", "train_time": 58295, "bits_x": "1.1887", "n_processed": 750720, "loss": "1.1887", "epoch": 15, "bits_y": "0.0000", "n_images": 11730} {"pred_loss": "1.0000", "train_time": 62163, "bits_x": "1.1754", "n_processed": 800768, "loss": "1.1754", "epoch": 16, "bits_y": "0.0000", "n_images": 12512} {"pred_loss": "1.0000", "train_time": 66025, "bits_x": "1.1826", "n_processed": 850816, "loss": "1.1826", "epoch": 17, "bits_y": "0.0000", "n_images": 13294} {"pred_loss": "1.0000", "train_time": 69890, "bits_x": "1.1680", "n_processed": 900864, "loss": "1.1680", "epoch": 18, "bits_y": "0.0000", "n_images": 14076} {"pred_loss": "1.0000", "train_time": 73756, "bits_x": "1.1749", "n_processed": 950912, "loss": "1.1749", "epoch": 19, "bits_y": "0.0000", "n_images": 14858} {"pred_loss": "1.0000", "train_time": 77620, "bits_x": "1.1742", "n_processed": 1000960, "loss": "1.1742", "epoch": 20, "bits_y": "0.0000", "n_images": 15640} {"pred_loss": "1.0000", "train_time": 81488, "bits_x": "1.1676", "n_processed": 1051008, "loss": "1.1676", "epoch": 21, "bits_y": "0.0000", "n_images": 16422} {"pred_loss": "1.0000", "train_time": 85357, "bits_x": "1.1604", "n_processed": 1101056, "loss": "1.1604", "epoch": 22, "bits_y": "0.0000", "n_images": 17204} {"pred_loss": "1.0000", "train_time": 89222, "bits_x": "1.1595", "n_processed": 1151104, "loss": "1.1595", "epoch": 23, "bits_y": "0.0000", "n_images": 17986} {"pred_loss": "1.0000", "train_time": 93085, "bits_x": "1.1667", "n_processed": 1201152, "loss": "1.1667", "epoch": 24, "bits_y": "0.0000", "n_images": 18768} {"pred_loss": "1.0000", "train_time": 96944, "bits_x": "1.1598", "n_processed": 1251200, "loss": "1.1598", "epoch": 25, "bits_y": "0.0000", "n_images": 19550} {"pred_loss": "1.0000", "train_time": 100799, "bits_x": "1.1596", "n_processed": 1301248, "loss": "1.1596", "epoch": 26, "bits_y": "0.0000", "n_images": 20332} {"pred_loss": "1.0000", "train_time": 104652, "bits_x": "1.1489", "n_processed": 1351296, "loss": "1.1489", "epoch": 27, "bits_y": "0.0000", "n_images": 21114} {"pred_loss": "1.0000", "train_time": 108512, "bits_x": "1.1517", "n_processed": 1401344, "loss": "1.1517", "epoch": 28, "bits_y": "0.0000", "n_images": 21896} {"pred_loss": "1.0000", "train_time": 112365, "bits_x": "1.1525", "n_processed": 1451392, "loss": "1.1525", "epoch": 29, "bits_y": "0.0000", "n_images": 22678} {"pred_loss": "1.0000", "train_time": 116231, "bits_x": "1.1481", "n_processed": 1501440, "loss": "1.1481", "epoch": 30, "bits_y": "0.0000", "n_images": 23460} {"pred_loss": "1.0000", "train_time": 120128, "bits_x": "1.1306", "n_processed": 1551488, "loss": "1.1306", "epoch": 31, "bits_y": "0.0000", "n_images": 24242}
The text was updated successfully, but these errors were encountered:
Maybe you ran out of CPU memory? Check using htop?
htop
Sorry, something went wrong.
No branches or pull requests
I was running training for 2 days and it stoped without an error. I have reaced 31 epoch for celeba problem.
Updated
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
, maybe it will be more verbose this time.The text was updated successfully, but these errors were encountered: