Skip to content
Zipkin is a distributed tracing system
Branch: master
Clone or download
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github Adjusts copyright headers for this year Jan 3, 2019
.mvn/wrapper Updates to the latest maven wrapper (#2423) Mar 2, 2019
benchmarks Extracts byte array specific code to ByteArrayBuffer Mar 22, 2019
src/etc Automagically deal with copyright year updates Jan 3, 2016
zipkin-autoconfigure [maven-release-plugin] prepare for next development iteration Mar 15, 2019
zipkin-collector Fix InterruptedException when KafkaCollectorWorker stops (#2450) Mar 19, 2019
zipkin-junit Adds test to ensure traces are grouped together (#2380) Mar 23, 2019
zipkin-lens Patch to fix 404 when refreshing on the index page (#2456) Mar 22, 2019
zipkin-storage Adds test to ensure traces are grouped together (#2380) Mar 23, 2019
zipkin-ui [maven-release-plugin] prepare for next development iteration Mar 15, 2019
zipkin Adds test to ensure traces are grouped together (#2380) Mar 23, 2019
.editorconfig Add .editorconfig and make sure we use LF (not CRLF) for line endings ( Jun 5, 2017
.gitignore Updates to the latest maven wrapper (#2423) Mar 2, 2019
.settings.xml Attempts to satisfy license plugin Feb 2, 2017
LICENSE Initial commit Aug 3, 2015 Fix URL in README (#2347) Jan 11, 2019
mvnw Updates to the latest maven wrapper (#2423) Mar 2, 2019
pom.xml Temporarily prefers gRPC's guava (#2463) Mar 22, 2019

Gitter chat Build Status Download


Zipkin is a distributed tracing system. It helps gather timing data needed to troubleshoot latency problems in microservice architectures. It manages both the collection and lookup of this data. Zipkin’s design is based on the Google Dapper paper.

This project includes a dependency-free library and a spring-boot server. Storage options include in-memory, JDBC (mysql), Cassandra, and Elasticsearch.


The quickest way to get started is to fetch the latest released server as a self-contained executable jar. Note that the Zipkin server requires minimum JRE 8. For example:

curl -sSL | bash -s
java -jar zipkin.jar

You can also start Zipkin via Docker.

docker run -d -p 9411:9411 openzipkin/zipkin

Once the server is running, you can view traces with the Zipkin UI at http://your_host:9411/zipkin/.

If your applications aren't sending traces, yet, configure them with Zipkin instrumentation or try one of our examples.

Check out the zipkin-server documentation for configuration details, or docker-zipkin for how to use docker-compose.

Core Library

The core library is used by both Zipkin instrumentation and the Zipkin server. Its minimum Java language level is 6, in efforts to support those writing agent instrumentation.

This includes built-in codec for Zipkin's v1 and v2 json formats. A direct dependency on gson (json library) is avoided by minifying and repackaging classes used. The result is a 155k jar which won't conflict with any library you use.


// All data are recorded against the same endpoint, associated with your service graph
localEndpoint = Endpoint.newBuilder().serviceName("tweetie").ip("").build()
span = Span.newBuilder()
    .putTag("compression.level", "9");

// Now, you can encode it as json
bytes = SpanBytesEncoder.JSON_V2.encode(span);

Note: The above is just an example, most likely you'll want to use an existing tracing library like Brave

Storage Component

Zipkin includes a StorageComponent, used to store and query spans and dependency links. This is used by the server and those making custom servers, collectors, or span reporters. For this reason, storage components have minimal dependencies, but most require Java 8+


// this won't create network connections
storage = ElasticsearchStorage.newBuilder()

// prepare a call
traceCall = storage.spanStore().getTrace("d3d200866a77cc59");

// execute it synchronously or asynchronously
trace = traceCall.execute();

// clean up any sessions, etc


The InMemoryStorage component is packaged in zipkin's core library. It is neither persistent, nor viable for realistic work loads. Its purpose is for testing, for example starting a server on your laptop without any database needed.


The Cassandra component is tested against Cassandra 3.11.3+. It stores spans using UDTs, such that they appear like the v2 Zipkin model in cqlsh. It is designed for scale. For example, it uses a combination of SASI and manually implemented indexes to make querying larger data more performant.

Note: This store requires a spark job to aggregate dependency links.


The Elasticsearch component is tested against Elasticsearch 2-6.x. It stores spans as json and has been designed for larger scale.

Note: This store requires a spark job to aggregate dependency links.

Disabling search

Search is enabled by default, primarily in support of the GET /traces, GET /spans and GET /services endpoints used by the "Find a Trace" screen in Zipkin's UI. When search is disabled, traces can only be retrieved by ID.

Sites who use another service (such as logs) to find trace IDs can disable search to reduce storage costs or increase write throughput.

StorageComponent.Builder.searchEnabled(false) is implied when a zipkin is run with the env variable SEARCH_ENABLED=false.

Legacy (v1) components

The following components are no longer encouraged, but exist to help aid transition to supported ones. These are indicated as "v1" as they use data layouts based on Zipkin's V1 Thrift model, as opposed to the simpler v2 data model currently used.


The MySQL v1 component currently is only tested with MySQL 5.6-7. It is designed to be easy to understand, and get started with. For example, it deconstructs spans into columns, so you can perform ad-hoc queries using SQL. However, this component has known performance issues: queries will eventually take seconds to return if you put a lot of data into it.


The Cassandra v1 component is tested against Cassandra 2.2+. It stores spans as opaque thrifts which means you can't read them in cqlsh. However, it is designed for scale. For example, it has manually implemented indexes to make querying larger data more performant. This store requires a spark job to aggregate dependency links.

Running the server from source

The Zipkin server receives spans via HTTP POST and respond to queries from its UI. It can also run collectors, such as RabbitMQ or Kafka.

To run the server from the currently checked out source, enter the following. JDK 8 is required.

# Build the server and also make its dependencies
$ ./mvnw -DskipTests --also-make -pl zipkin-server clean install
# Run the server
$ java -jar ./zipkin-server/target/zipkin-server-*exec.jar


Library Releases

Releases are uploaded to Bintray.

Library Snapshots

Snapshots are uploaded to JFrog after commits to master.

Docker Images

Released versions of zipkin-server are published to Docker Hub as openzipkin/zipkin. See docker-zipkin for details.

Javadocs contains versioned folders with JavaDocs published on each (non-PR) build, as well as releases.

You can’t perform that action at this time.