-
Notifications
You must be signed in to change notification settings - Fork 126
/
ChowRings.jl
220 lines (184 loc) · 6.51 KB
/
ChowRings.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
@doc raw"""
chow_ring(M::Matroid; ring::MPolyRing=nothing, extended::Bool=false)
Return the Chow ring of a matroid, optionally also with the simplicial generators and the polynomial ring.
See [AHK18](@cite) and [BES19](@cite).
# Examples
The following computes the Chow ring of the Fano matroid.
```jldoctest
julia> M = fano_matroid();
julia> R = chow_ring(M);
julia> R[1]*R[8]
-x_{3,4,7}^2
```
The following computes the Chow ring of the Fano matroid including variables for the simplicial generators.
```jldoctest
julia> M = fano_matroid();
julia> R = chow_ring(M, extended=true);
julia> f = R[22] + R[8] - R[29]
x_{1,2,3} + h_{1,2,3} - h_{1,2,3,4,5,6,7}
julia> f==0
true
```
The following computes the Chow ring of the free matroid on three elements in a given graded polynomial ring.
```jldoctest
julia> M = uniform_matroid(3,3);
julia> GR, _ = graded_polynomial_ring(QQ,["a","b","c","d","e","f"]);
julia> R = chow_ring(M, ring=GR);
julia> hilbert_series_reduced(R)
(t^2 + 4*t + 1, 1)
```
"""
function chow_ring(M::Matroid; ring::Union{MPolyRing,Nothing}=nothing, extended::Bool=false)
is_loopless(M) || error("Matroid has loops")
Flats = flats(M)
number_flats = length(Flats)
number_flats >= 2 || error("matroid has to few flats")
proper_flats = Flats[2:number_flats-1]
#construct polynomial ring and extract variables
if ring==nothing
# create variable names, indexed by the proper flats of M
var_names = ["x_{" * join(S, ",") * "}" for S in proper_flats]
if extended
#add the variables for the simplicial generators
var_names = [var_names; ["h_{" * join(S, ",") * "}" for S in [proper_flats;[Flats[number_flats]]]]]
end
ring, vars = polynomial_ring(QQ, var_names, cached=false)
else
if extended
nvars(ring) == 2*length(proper_flats)+1 || error("the ring has the wrong number of variables")
else
nvars(ring) == length(proper_flats) || error("the ring has the wrong number of variables")
end
vars = gens(ring)
end
#construct ideal and quotient
I = linear_relations(ring, proper_flats, vars, M)
J = quadratic_relations(ring, proper_flats, vars)
Ex = elem_type(ring)[]
if extended
Ex = relations_extended_ring(ring, proper_flats, vars)
end
chow_modulus = ideal(ring, vcat(I, J, Ex))
chow_ring, projection = quo(ring, chow_modulus)
return chow_ring
end
function linear_relations(ring::MPolyRing, proper_flats::Vector{Vector}, vars::Vector, M::Matroid)
alpha = zero(ring)
relations = elem_type(ring)[]
for i in M.groundset
poly = ring(0)
for index in findall(F->issubset([i], F), proper_flats)
poly+= vars[index]
end
if i==M.groundset[1]
alpha = poly
else
push!(relations, alpha-poly)
end
end
return relations
end
function quadratic_relations(ring::MPolyRing, proper_flats::Vector{Vector}, vars::Vector)
relations = elem_type(ring)[]
for i in 1:length(proper_flats)
F = proper_flats[i]
for j in 1:i-1
G = proper_flats[j]
if !issubset(F,G) && !issubset(G,F)
push!(relations, vars[i]*vars[j])
end
end
end
return relations
end
function relations_extended_ring(ring::MPolyRing, proper_flats::Vector{Vector}, vars::Vector)
relations = elem_type(ring)[]
s = length(proper_flats)
# h_E = alpha = -x_E
poly = ring(0)
for index in findall(F->issubset([1], F), proper_flats)
poly+= vars[index]
end
push!(relations, poly-vars[2*s+1])
# h_F = h_E - sum x_G where G is a proper flat containing F
for i in 1:s
F = proper_flats[i]
poly = ring(0)
for index in findall(G->issubset(F,G), proper_flats)
poly+= vars[index]
end
push!(relations, poly+vars[s+i]-vars[2*s+1]) #add h_F and subtract h_E
end
return relations
end
@doc raw"""
augmented_chow_ring(M::Matroid)
Return an augmented Chow ring of a matroid. As described in [BHMPW20](@cite).
# Examples
```jldoctest
julia> M = fano_matroid();
julia> R = augmented_chow_ring(M);
```
"""
function augmented_chow_ring(M::Matroid)
#This function was implemented by Fedor Glazov
Flats = flats(M)
sizeFlats = length(Flats)
n = length(M)
is_loopless(M) || error("Matroid has loops")
sizeFlats>3 || error("Matroid has too few flats")
proper_flats = Flats[1:sizeFlats-1]
element_var_names = [string("y_", S) for S in M.groundset]
flat_var_names = ["x_{" * join(S, ",") * "}" for S in proper_flats]
var_names = vcat(element_var_names, flat_var_names)
s = length(var_names)
ring, vars = polynomial_ring(QQ, var_names)
element_vars = vars[1:n]
flat_vars = vars[n+1:s]
I = augmented_linear_relations(ring, proper_flats, element_vars, flat_vars, M)
J = augmented_quadratic_relations(ring, proper_flats, element_vars, flat_vars, M)
chow_modulus = ideal(ring, vcat(I, J))
chow_ring, projection = quo(ring, chow_modulus)
return chow_ring
end
function augmented_linear_relations(ring::MPolyRing, proper_flats::Vector{Vector}, element_vars::Vector, flat_vars::Vector, M::Matroid)
n = length(M)
relations = Vector{elem_type(ring)}(undef,n)
i = 1
for element in M.groundset
relations[i] = element_vars[i]
j = 1
for proper_flat in proper_flats
if !(element in proper_flat)
relations[i] -= flat_vars[j]
end
j += 1
end
i += 1
end
return relations
end
function augmented_quadratic_relations(ring::MPolyRing, proper_flats::Vector{Vector}, element_vars::Vector, flat_vars::Vector, M::Matroid)
incomparable_polynomials = quadratic_relations(ring, proper_flats, flat_vars)
xy_polynomials = elem_type(ring)[]
i = 1
for element in M.groundset
j = 1
for proper_flat in proper_flats
if !(element in proper_flat)
push!(xy_polynomials, element_vars[i] * flat_vars[j])
end
j += 1
end
i += 1
end
return vcat(incomparable_polynomials, xy_polynomials)
end
"""
A helper function to select indices of a vector that do `include` elements of a given set and `exclude` another
"""
function _select(include::Union{AbstractVector,Set},exclude::Union{AbstractVector,Set},set::Union{AbstractVector,Set})
all = union(set...)
compl = setdiff(all,exclude)
return findall(s->issubset(include,s)&&issubset(s,compl),set);
end