Skip to content

Commit

Permalink
Sophisticated show method for normal toric varieties
Browse files Browse the repository at this point in the history
  • Loading branch information
HereAround committed Dec 23, 2021
1 parent 2128fe8 commit a1368a2
Show file tree
Hide file tree
Showing 8 changed files with 142 additions and 61 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ $0<q<n$ and $q,n$ coprime.
# Examples
```jldoctest
julia> cqs = CyclicQuotientSingularity(7,5)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal toric variety
julia> isaffine(cqs)
true
Expand Down Expand Up @@ -60,7 +60,7 @@ differs in sign from what is commonly known as continued fraction.
# Examples
```jldoctest
julia> cqs = CyclicQuotientSingularity(7,5)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal toric variety
julia> cf = continued_fraction_hirzebruch_jung(cqs)
3-element Vector{fmpz}:
Expand Down Expand Up @@ -96,7 +96,7 @@ differs in sign from what is commonly known as continued fraction.
# Examples
```jldoctest
julia> cqs = CyclicQuotientSingularity(7,5)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal toric variety
julia> dcf = dual_continued_fraction_hirzebruch_jung(cqs)
2-element Vector{fmpz}:
Expand Down Expand Up @@ -130,7 +130,7 @@ differs in sign from what is commonly known as continued fraction.
# Examples
```jldoctest
julia> cqs = CyclicQuotientSingularity(7,5)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal toric variety
julia> v = continued_fraction_hirzebruch_jung(cqs)
3-element Vector{fmpz}:
Expand Down
2 changes: 1 addition & 1 deletion src/ToricVarieties/JToric.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
include("NormalToricVarieties/auxilliary.jl")
include("NormalToricVarieties/constructors.jl")
include("NormalToricVarieties/auxilliary.jl")
include("NormalToricVarieties/properties.jl")
include("NormalToricVarieties/attributes.jl")
include("NormalToricVarieties/methods.jl")
Expand Down
2 changes: 1 addition & 1 deletion src/ToricVarieties/LineBundles/constructors.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ Convenience method for ToricLineBundle(v::AbstractNormalToricVariety, c::Vector{
# Examples
```jldoctest
julia> v = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> l = ToricLineBundle( v, [ 2 ] )
A line bundle on a normal toric variety corresponding to a polyhedral fan in ambient dimension 2
Expand Down
40 changes: 20 additions & 20 deletions src/ToricVarieties/NormalToricVarieties/attributes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ Computes the Cox ring of the normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> cox_ring(p2)
(Multivariate Polynomial Ring in x[1], x[2], x[3] over Rational Field graded by
Expand Down Expand Up @@ -92,7 +92,7 @@ Computes the Stanley-Reisner ideal of a normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> ngens(stanley_reisner_ideal(P2))
1
Expand All @@ -118,7 +118,7 @@ Computes the irrelevant ideal of a normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> length(irrelevant_ideal(p2).gens)
1
Expand Down Expand Up @@ -174,7 +174,7 @@ julia> C = positive_hull([1 0 0; 1 1 0; 1 0 1; 1 1 1])
A polyhedral cone in ambient dimension 3
julia> antv = AffineNormalToricVariety(C)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 3
A normal, affine, non-complete toric variety
julia> toric_ideal(antv)
ideal(-x[1]*x[2] + x[3]*x[4])
Expand Down Expand Up @@ -204,7 +204,7 @@ Computes the character lattice of a normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> character_lattice(p2)
GrpAb: Z^2
Expand All @@ -227,7 +227,7 @@ Computes the torusinvariant divisor group of a normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> torusinvariant_divisor_group(p2)
GrpAb: Z^3
Expand All @@ -250,7 +250,7 @@ Computes the map from the character lattice to the group of principal divisors o
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_character_to_principal_divisors(p2)
Map with following data
Expand Down Expand Up @@ -281,7 +281,7 @@ Computes the list of all torus invariant prime divisors in a normal toric variet
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> torusinvariant_prime_divisors(p2)
Free module of rank 3 over Integer Ring
Expand Down Expand Up @@ -311,7 +311,7 @@ Computes the class group of the normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> class_group(p2)
Abelian group with structure: Z
Expand Down Expand Up @@ -363,7 +363,7 @@ torus-invariant Weil divisors of an abstract normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_cartier_divisor_group_to_torus_invariant_divisor_group(p2)
Map with following data
Expand Down Expand Up @@ -448,7 +448,7 @@ Computes the Cartier divisor group of an abstract normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> cartier_divisor_group(p2)
GrpAb: Z^3
Expand All @@ -472,7 +472,7 @@ of an abstract normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_cartier_divisor_group_to_picard_group(p2)
Map with following data
Expand Down Expand Up @@ -514,7 +514,7 @@ Computes the Picard group of an abstract normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> picard_group(p2)
GrpAb: Z
Expand Down Expand Up @@ -542,7 +542,7 @@ Computes the nef cone of the normal toric variety `v`.
# Examples
```jldoctest
julia> pp = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> nef = nef_cone(pp)
A polyhedral cone in ambient dimension 1
Expand All @@ -568,7 +568,7 @@ Computes the mori cone of the normal toric variety `v`.
# Examples
```jldoctest
julia> pp = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> mori = mori_cone(pp)
A polyhedral cone in ambient dimension 1
Expand All @@ -594,7 +594,7 @@ Computes the fan of an abstract normal toric variety `v`.
# Examples
```jdoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> fan(p2)
A polyhedral fan in ambient dimension 2
Expand Down Expand Up @@ -642,13 +642,13 @@ Computes an affine open cover of the normal toric variety `v`, i.e. returns a li
# Examples
```jldoctest
julia> p2 = toric_projective_space(2)
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, non-affine, smooth, projective, gorenstein, q-gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> affine_open_covering(p2)
3-element Vector{AffineNormalToricVariety}:
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal toric variety corresponding to a polyhedral fan in ambient dimension 2
A normal, affine, non-complete toric variety
A normal, affine, non-complete toric variety
A normal, affine, non-complete toric variety
```
"""
function affine_open_covering(v::AbstractNormalToricVariety)
Expand Down
Loading

0 comments on commit a1368a2

Please sign in to comment.