@@ -71,7 +71,7 @@ \section{Array Declarations}\doublelabel{array-declarations}
71
71
\begin {longtable }{|l|l|l|l|p{4cm}|}
72
72
\caption {General forms of declaration of arrays.}\\
73
73
\hline
74
- \emph {Modelica form 1 } & \emph {Modelica form 2 } & \emph {\# dimensions } & \emph {Designation } & \emph {Explanation }\\ \hline
74
+ \tablehead {Modelica form 1} & \tablehead {Modelica form 2} & \tablehead {\# dimensions} & \tablehead {Designation} & \tablehead {Explanation}\\ \hline
75
75
\endhead
76
76
C x; & C x; & 0 & Scalar & Scalar\\ \hline
77
77
C{[}n{]} x; & C x{[}n{]}; & 1 & Vector & n -- Vector\\ \hline
@@ -122,8 +122,8 @@ \section{Array Declarations}\doublelabel{array-declarations}
122
122
\caption {Declaration of arrays as 1-vectors, row-vectors, or
123
123
column-vectors of arrays.}\\
124
124
\hline
125
- \emph {Modelica form 1 } & \emph {Modelica form 2 } & \emph {\# dimensions } &
126
- \emph {Designation } & \emph {Explanation }\\ \hline
125
+ \tablehead {Modelica form 1} & \tablehead {Modelica form 2} & \tablehead {\# dimensions} &
126
+ \tablehead {Designation} & \tablehead {Explanation}\\ \hline
127
127
\endhead
128
128
C{[}1{]} x; & C x{[}1{]}; & 1 & Vector & 1 -- Vector, representing a scalar\\ \hline
129
129
C{[}1,1{]} x; & C x{[}1, 1{]}; & 2 & Matrix & 1 x 1 -- Matrix, representing a scalar\\ \hline
@@ -245,7 +245,7 @@ \subsection{Array Dimension and Size Functions}\doublelabel{array-dimension-and-
245
245
\begin {longtable }[]{|l|p{9cm}|}
246
246
\caption {Built-in array dimension and size functions.}\\
247
247
\hline
248
- \emph {Modelica } & \emph {Explanation }\\ \hline
248
+ \tablehead {Modelica} & \tablehead {Explanation}\\ \hline
249
249
\endhead
250
250
\lstinline !ndims(A) ! &
251
251
Returns the number of dimensions $ k$ of expression \lstinline !A !, with $ k \geq 0 $ .
@@ -265,7 +265,7 @@ \subsection{Dimensionality Conversion Functions}\doublelabel{dimensionality-conv
265
265
\begin {longtable }[]{|l|p{9cm}|}
266
266
\caption {Built-in dimensionality conversion functions.}\\
267
267
\hline
268
- \emph {Modelica } & \emph {Explanation }\\ \hline
268
+ \tablehead {Modelica} & \tablehead {Explanation}\\ \hline
269
269
\endhead
270
270
\lstinline !scalar(A) ! & Returns the single element of array \lstinline !A !. $ \text {\lstinline !size(A, i) !} = 1 $ is required for $ 1
271
271
\leq \text {\lstinline !i !} \leq \text {\lstinline !ndims(A) !}$ .\\ \hline
@@ -293,7 +293,7 @@ \subsection{Specialized Array Constructor Functions}\doublelabel{specialized-arr
293
293
\begin {longtable }[]{|l|p{11cm}|}
294
294
\caption {Specialized array constructor functions.}\\
295
295
\hline
296
- \emph {Modelica } & \emph {Explanation }\\ \hline
296
+ \tablehead {Modelica} & \tablehead {Explanation}\\ \hline
297
297
\endhead
298
298
\lstinline !identity(n) !
299
299
&
@@ -346,7 +346,7 @@ \subsection{Reduction Functions and Operators}\doublelabel{reduction-functions-a
346
346
\begin {longtable }{|p{4.1cm}|p{10.1cm}|}
347
347
\caption {Array reduction functions and operators.}\\
348
348
\hline
349
- \emph {Modelica } & \emph {Explanation }\\ \hline
349
+ \tablehead {Modelica} & \tablehead {Explanation}\\ \hline
350
350
\endhead
351
351
\lstinline !min(A) !
352
352
&
@@ -470,7 +470,7 @@ \subsubsection{Reduction Expressions}\doublelabel{reduction-expressions}
470
470
\begin {longtable }{|p{3cm}|p{5cm}|p{6cm}|}
471
471
\caption {Reduction expressions with iterators.}\\
472
472
\hline
473
- \emph {Function-name } & \emph {Restriction on expression1 } & \emph {Result if expression2 is empty }\\ \hline
473
+ \tablehead {Function-name} & \tablehead {Restriction on expression1} & \tablehead {Result if expression2 is empty}\\ \hline
474
474
\endhead
475
475
\lstinline !sum ! & Integer or Real & \lstinline !zeros(...) !\\ \hline
476
476
\lstinline !product ! & Scalar Integer or Real & \lstinline !1 !\\ \hline
@@ -506,7 +506,7 @@ \subsection{Matrix and Vector Algebra Functions}\doublelabel{matrix-and-vector-a
506
506
\begin {longtable }[]{|p{3.5cm}|p{11.5cm}|}
507
507
\caption {Matrix and vector algebra functions.}\\
508
508
\hline
509
- \emph {Modelica } & \emph {Explanation }\\ \hline
509
+ \tablehead {Modelica} & \tablehead {Explanation}\\ \hline
510
510
\endhead
511
511
\lstinline !transpose(A) !
512
512
& Permutes the first two dimensions of array A. It is an error, if array A
@@ -828,7 +828,7 @@ \section{Array Indexing}\doublelabel{array-indexing}
828
828
\begin {longtable }[]{|l|l|l|}
829
829
\caption {Examples of scalars vs. array slices created with the colon index.}\\
830
830
\hline
831
- \emph {Expression } & \emph {\# dimensions } & \emph {Type of value }\\ \hline
831
+ \tablehead {Expression} & \tablehead {\# dimensions} & \tablehead {Type of value}\\ \hline
832
832
\endhead
833
833
\lstinline !x[1, 1] ! & \lstinline !0 ! & Scalar\\ \hline
834
834
\lstinline !x[:, 1] ! & \lstinline !1 ! & n -- Vector\\ \hline
@@ -897,7 +897,7 @@ \subsection{Equality and Assignment}\doublelabel{equality-and-assignment}
897
897
\begin {longtable }[]{|l|l|l|l|}
898
898
\caption {Equality and assignment of arrays and scalars.}\\
899
899
\hline
900
- \emph {Type of a } & \emph {Type of b } & \emph {Result of } a = b & \emph {Operation } (j=1:n, k=1:m)\\ \hline
900
+ \tablehead {Type of a} & \tablehead {Type of b} & \tablehead {Result of} a = b & \tablehead {Operation} (j=1:n, k=1:m)\\ \hline
901
901
\endhead
902
902
Scalar & Scalar & Scalar & a = b\\ \hline
903
903
Vector{[}n{]} & Vector{[}n{]} & Vector{[}n{]} & a{[}j{]} =
@@ -921,8 +921,8 @@ \subsection{Array Element-wise Addition, Subtraction, and String Concatenation}\
921
921
\begin {longtable }[]{|l|l|l|l|}
922
922
\caption {Array addition, subtraction, and string concatenation.}\\
923
923
\hline
924
- \emph {Type of a } & \emph {Type of b } & \emph {Result of a +/- b } &
925
- \emph {Operation c := a +/- b (j=1:n, k=1:m) }\\ \hline
924
+ \tablehead {Type of a} & \tablehead {Type of b} & \tablehead {Result of a +/- b} &
925
+ \tablehead {Operation c := a +/- b (j=1:n, k=1:m)}\\ \hline
926
926
\endhead
927
927
Scalar & Scalar & Scalar & c := a +/- b\\ \hline
928
928
Vector{[}n{]} & Vector{[}n{]} & Vector{[}n{]} & c{[}j{]} := a{[}j{]} +/-
@@ -945,8 +945,8 @@ \subsection{Array Element-wise Addition, Subtraction, and String Concatenation}\
945
945
\begin {longtable }[]{|l|l|l|l|}
946
946
\caption {Array element-wise addition, subtraction, and string concatenation.}\\
947
947
\hline
948
- \emph {Type of a } & \emph {Type of b } & \emph {Result of a } \lstinline !.+/.- ! \emph {b }
949
- & \emph {Operation c := a .+/.- b (j=1:n, k=1:m) }\\ \hline
948
+ \tablehead {Type of a} & \tablehead {Type of b} & \tablehead {Result of a} \lstinline !.+/.- ! \tablehead {b}
949
+ & \tablehead {Operation c := a .+/.- b (j=1:n, k=1:m)}\\ \hline
950
950
\endhead
951
951
Scalar & Scalar & Scalar & c := a +/- b\\ \hline
952
952
Scalar & Array{[}n, m, \ldots {}{]} & Array{[}n, m, \ldots {}{]} & c{[}j,
@@ -962,7 +962,7 @@ \subsection{Array Element-wise Addition, Subtraction, and String Concatenation}\
962
962
\begin {longtable }[]{|l|l|l|}
963
963
\caption {Unary operators. The element-wise (.+, .-) and normal (+, -) operators give the same results.}\\
964
964
\hline
965
- \emph {Type of a } & \emph {Result of } \lstinline !+/- ! \emph {a } & \emph {Operation c :=
965
+ \tablehead {Type of a} & \tablehead {Result of} \lstinline !+/- ! \tablehead {a} & \tablehead {Operation c :=
966
966
+/- a (j=1:n, k=1:m)}\\ \hline
967
967
\endhead
968
968
Scalar & Scalar & c := +/- a\\ \hline
@@ -978,8 +978,8 @@ \subsection{Array Element-wise Multiplication}\doublelabel{array-element-wise-mu
978
978
\begin {longtable }[]{|l|l|l|l|}
979
979
\caption {Scalar and scalar to array multiplication of numeric elements}\\
980
980
\hline
981
- \emph {Type of s } & \emph {Type of a } & \emph {Type of s* a and a*s } &
982
- \emph {Operation } c := s*a or c := a*s (j=1:n, k=1:m)\\ \hline
981
+ \tablehead {Type of s} & \tablehead {Type of a} & \tablehead {Type of s* a and a*s} &
982
+ \tablehead {Operation} c := s*a or c := a*s (j=1:n, k=1:m)\\ \hline
983
983
\endhead
984
984
Scalar & Scalar & Scalar & c := s * a\\ \hline
985
985
Scalar & Vector {[}n{]} & Vector {[}n{]} & c{[}j{]} := s*
@@ -998,8 +998,8 @@ \subsection{Array Element-wise Multiplication}\doublelabel{array-element-wise-mu
998
998
\begin {longtable }[]{|l|l|l|l|}
999
999
\caption {Array element-wise multiplication}\\
1000
1000
\hline
1001
- \emph {Type of a } & \emph {Type of b } & \emph {Type of a .* b } &
1002
- \emph {Operation } c:=a .* b (j=1:n, k=1:m)\\ \hline
1001
+ \tablehead {Type of a} & \tablehead {Type of b} & \tablehead {Type of a .* b} &
1002
+ \tablehead {Operation} c:=a .* b (j=1:n, k=1:m)\\ \hline
1003
1003
\endhead
1004
1004
Scalar & Scalar & Scalar & c := a * b\\ \hline
1005
1005
Scalar & Array{[}n, m, \ldots {}{]} & Array{[}n, m, \ldots {}{]} & c{[}j,
@@ -1018,8 +1018,8 @@ \subsection{Matrix and Vector Multiplication of Numeric Arrays}\doublelabel{matr
1018
1018
\begin {longtable }[]{|l|l|l|l|}
1019
1019
\caption {Matrix and vector multiplication of arrays with numeric elements.}\\
1020
1020
\hline
1021
- \emph {Type of a } & \emph {Type of b } & \emph {Type of a* b } &
1022
- \emph {Operation c := a*b }\\ \hline
1021
+ \tablehead {Type of a} & \tablehead {Type of b} & \tablehead {Type of a* b} &
1022
+ \tablehead {Operation c := a*b}\\ \hline
1023
1023
\endhead
1024
1024
Vector {[}n{]} & Vector {[}n{]} & Scalar & c :=
1025
1025
$ \textrm {sum}_k$ (a{[}k{]}*b{[}k{]}), k=1:n\\ \hline
@@ -1054,8 +1054,8 @@ \subsection{Division of Scalars or Numeric Arrays by Numeric Scalars}\doublelabe
1054
1054
\begin {longtable }[]{|l|l|l|l|}
1055
1055
\caption {Division of scalars and arrays by numeric elements.}\\
1056
1056
\hline \endhead
1057
- \emph {Type of a } & \emph {Type of s } & \emph {Result of a / s } &
1058
- \emph {Operation c := a / s (j=1:n, k=1:m) }\\ \hline
1057
+ \tablehead {Type of a} & \tablehead {Type of s} & \tablehead {Result of a / s} &
1058
+ \tablehead {Operation c := a / s (j=1:n, k=1:m)}\\ \hline
1059
1059
Scalar & Scalar & Scalar & c := a / s\\ \hline
1060
1060
Vector{[}n{]} & Scalar & Vector{[}n{]} & c{[}k{]} := a{[}k{]} /
1061
1061
s\\ \hline
@@ -1077,8 +1077,8 @@ \subsection{Array Element-wise Division}\doublelabel{array-element-wise-division
1077
1077
\begin {longtable }[]{|l|l|l|l|}
1078
1078
\caption {Element-wise division of arrays}\\
1079
1079
\hline \endhead
1080
- \emph {Type of a } & \emph {Type of b } & \emph {Type of a ./ b } &
1081
- \emph {Operation } c:=a ./ b (j=1:n, k=1:m)\\ \hline
1080
+ \tablehead {Type of a} & \tablehead {Type of b} & \tablehead {Type of a ./ b} &
1081
+ \tablehead {Operation} c:=a ./ b (j=1:n, k=1:m)\\ \hline
1082
1082
Scalar & Scalar & Scalar & c := a / b\\ \hline
1083
1083
Scalar & Array{[}n, m, \ldots {}{]} & Array{[}n, m, \ldots {}{]} & c{[}j,
1084
1084
k, \ldots {}{]} := a / b{[}j, k, \ldots {}{]}\\ \hline
@@ -1117,8 +1117,8 @@ \subsection{Exponentiation of Scalars of Numeric Elements}\doublelabel{exponenti
1117
1117
\begin {longtable }[]{|l|l|l|l|}
1118
1118
\caption {Element-wise exponentiation of arrays}\\
1119
1119
\hline
1120
- \emph {Type of a } & \emph {Type of b } & \emph {Type of a .\^ {} b } &
1121
- \emph {Operation } c:=a .\^ {} b (j=1:n, k=1:m)\\ \hline
1120
+ \tablehead {Type of a} & \tablehead {Type of b} & \tablehead {Type of a .\^ {} b} &
1121
+ \tablehead {Operation} c:=a .\^ {} b (j=1:n, k=1:m)\\ \hline
1122
1122
\endhead
1123
1123
Scalar & Scalar & Scalar & c := a \^ {} b\\ \hline
1124
1124
Scalar & Array{[}n, m, \ldots {}{]} & Array{[}n, m, \ldots {}{]} & c{[}j,
0 commit comments