This is a starter kit for my Machine Learning project. It provides a structured directory layout, pre-defined scripts, and configurations to help you quickly set up and start working on your ML project.
.
├── bin/ # Binary files or scripts
├── data/ # Data storage
│ └── .gitkeep # Keeps the folder in version control
├── notebook/ # Jupyter notebooks for experiments and analysis
│ └── .gitkeep # Keeps the folder in version control
├── results/ # Output results from experiments
│ └── .gitkeep # Keeps the folder in version control
├── src/ # Source code for the project
│ ├── configs/ # Configuration files
│ │ └── .gitkeep # Keeps the folder in version control
│ ├── eval/ # Evaluation scripts
│ │ └── __init__.py
│ ├── experiments/ # Experiment scripts and logs
│ │ └── .gitkeep # Keeps the folder in version control
│ ├── finetune/ # Fine-tuning scripts
│ │ └── __init__.py
│ ├── inference/ # Inference scripts
│ │ ├── inference.py
│ │ └── __init__.py
│ ├── models/ # Model definitions
│ │ ├── models.py
│ │ └── __init__.py
│ ├── train/ # Training scripts
│ │ ├── train.py
│ │ └── __init__.py
│ ├── utils/ # Utility scripts
│ │ ├── prepare_data.py
│ │ └── __init__.py
│ └── __init__.py
├── scripts/ # Scripts for setting up and running the project
│ └── run.sh
├── requirements.txt # Python dependencies
├── .gitignore # Git ignore file
├── CONTRIBUTING.md # Guidelines for contributing to the project
├── LICENSE # License file
└── README.md # Project documentation
-
Clone the repository:
git clone <repository-url> cd <repository-directory>
-
Install dependencies:
pip install -r requirements.txt
-
Run the project: Use the provided scripts in the
scripts/
directory to start training, evaluation, or inference.
Please read CONTRIBUTING.md
for guidelines on how to contribute to this project.
This project is licensed under the MIT License - see the LICENSE
file for details.