-
Notifications
You must be signed in to change notification settings - Fork 0
paapu88/OldRekkari
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# Rekkari Recognition of a numberplate of a car 1) copy positive samples to positive_samples directory (use ../../picture2rectangle.py to clip, clipped images go to dir 'Rectangle' accepted full images go to dir 'NotScaled' images with rectangle replaced by ball go to dir 'NegativeSamples' ) 2) copy negative samples to negative_samples directory you can generate more negatives by google picture search by python3 ../../../get_google_images.py (remember to manually remove positive figures here) You can process files by python3 ../../../add_balls.py which writes to 'HumanProcessed' directory 3) find ./negative_images -iname "*.jpg" > negatives.txt cp PositivePicturesFromPhone/NotScaled/* positive_images/ find ./positive_images -iname "*.jpg" > positives.txt 4) create distorted positive samples: perl ../opencv-haar-classifier-training/bin/createsamples.pl positives.txt negatives.txt samples 1000 "opencv_createsamples -maxxangle 0.1 -maxyangle 0.1 -maxzangle 0.3 -maxidev 50 -w 20 -h 5" check: opencv_createsamples -w 20 -h 5 -vec ./samples/*vec 5) merge positive *.vec files to one vec file python2 ~/Dropbox/Apu/mergevec.py -v samples -o positives.vec #python2 ../opencv-haar-classifier-training/tools/mergevec.py -v samples -o positives.vec check: opencv_createsamples -w 20 -h 5 -vec positives.vec 4) generate vec file of positive samples NOT USED cp positives.txt info.txt edit info.txt to contain pixel info > ./positive_images/sample_IMG_20170307_102910.jpg 1 0 0 80 20 > ... opencv_createsamples -num 36 -info info.txt -w 80 -h 20 -vec positives.vec 6) train: check: opencv_createsamples -w 20 -h 5 -vec positives.vec rm -f classifier/* mkdir classifier opencv_traincascade -data classifier -vec positives.vec -bg negatives.txt\ -numStages 50 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos 1000 \ -numNeg 429 -w 20 -h 5 -mode ALL -precalcValBufSize 512\ -precalcIdxBufSize 512 7) in rekkariDetection.py play with parameters rekkari_cascade.detectMultiScale(img, 1.1, scale)
About
Recognition of a numberplate of a car
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published