Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOC: Enforce Numpy Docstring Validation for pandas.Series.max #58573

Merged
merged 2 commits into from
May 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion ci/code_checks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
-i "pandas.Series.list.flatten SA01" \
-i "pandas.Series.list.len SA01" \
-i "pandas.Series.lt PR07,SA01" \
-i "pandas.Series.max RT03" \
-i "pandas.Series.mean RT03,SA01" \
-i "pandas.Series.median RT03,SA01" \
-i "pandas.Series.min RT03" \
Expand Down
60 changes: 59 additions & 1 deletion pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -6157,14 +6157,72 @@ def min(
)

@deprecate_nonkeyword_arguments(version="3.0", allowed_args=["self"], name="max")
@doc(make_doc("max", ndim=1))
def max(
self,
axis: Axis | None = 0,
skipna: bool = True,
numeric_only: bool = False,
**kwargs,
):
"""
Return the maximum of the values over the requested axis.

If you want the *index* of the maximum, use ``idxmax``.
This is the equivalent of the ``numpy.ndarray`` method ``argmax``.

Parameters
----------
axis : {index (0)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.

For DataFrames, specifying ``axis=None`` will apply the aggregation
across both axes.

.. versionadded:: 2.0.0

skipna : bool, default True
Exclude NA/null values when computing the result.
numeric_only : bool, default False
Include only float, int, boolean columns.
**kwargs
Additional keyword arguments to be passed to the function.

Returns
-------
scalar or Series (if level specified)
The maximum of the values in the Series.

See Also
--------
numpy.max : Equivalent numpy function for arrays.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
>>> idx = pd.MultiIndex.from_arrays(
... [["warm", "warm", "cold", "cold"], ["dog", "falcon", "fish", "spider"]],
... names=["blooded", "animal"],
... )
>>> s = pd.Series([4, 2, 0, 8], name="legs", index=idx)
>>> s
blooded animal
warm dog 4
falcon 2
cold fish 0
spider 8
Name: legs, dtype: int64

>>> s.max()
8
"""
return NDFrame.max(
self, axis=axis, skipna=skipna, numeric_only=numeric_only, **kwargs
)
Expand Down
Loading