Skip to content
master
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

PyMC3 Models

Custom PyMC3 models built on top of the scikit-learn API. Check out the docs.

Features

  • Reusable PyMC3 models including LinearRegression and HierarchicalLogisticRegression
  • A base class, BayesianModel, for building your own PyMC3 models

Installation

The latest release of PyMC3 Models can be installed from PyPI using pip:

pip install pymc3_models

The current development branch of PyMC3 Models can be installed from GitHub, also using pip:

pip install git+https://github.com/parsing-science/pymc3_models.git

To run the package locally (in a virtual environment):

git clone https://github.com/parsing-science/pymc3_models.git
cd pymc3_models
virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

Usage

Since PyMC3 Models is built on top of scikit-learn, you can use the same methods as with a scikit-learn model.

from pymc3_models import LinearRegression

LR = LinearRegression()
LR.fit(X, Y)
LR.predict(X)
LR.score(X, Y)

Contribute

For more info, see CONTRIBUTING.

Contributor Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See CODE_OF_CONDUCT.

Acknowledgments

This library is built on top of PyMC3 and scikit-learn.

License

Apache License, Version 2.0

About

No description, website, or topics provided.

Resources

License

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.