Experimental code for extracting verb-noun phrases and relations from graphical models (such as UML use case or BPMN process models), with intent to apply them to generate outputs for model-to-model transformations.
Environment should be setup by simply running
sh setup_env.sh
It is recommended to install it into separate environment.
To run the experiments, simply execute experiment.py
with appropriate parameters:
usage: experiment.py [-h] [--processor {spacy,stanza,flair,corenlp,bert,allen,simple,elmo-lstm,bert-lstm,xlm-roberta,electra}] --input-file INPUT_FILE [--task {phrases,ner}] [--column COLUMN] [--normalize-verbs]
[--output-file OUTPUT_FILE]
optional arguments:
-h, --help show this help message and exit
--processor {spacy,stanza,flair,corenlp,bert,allen,simple,elmo-lstm,bert-lstm,xlm-roberta,electra}
Used extraction processor
--input-file INPUT_FILE
Input dataset file which will be processed
--task {phrases,ner} Task type
--column COLUMN Column index for processing
--normalize-verbs Use verb normalization
--output-file OUTPUT_FILE
Output file
The dataset (input) files can be found in the datasets
folder.
The following papers contain results of this research:
@article{Danenas2020,
title={Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing},
author={Danenas, Paulius and Skersys, Tomas and Butleris, Rimantas},
journal={Applied Sciences},
publisher={MDPI AG},
volume={10},
number={19},
year={2020},
month={Sep},
pages={6835},
ISSN={2076-3417},
url={http://dx.doi.org/10.3390/app10196835},
DOI={10.3390/app10196835}
}
@article{Danenas2022,
title={Exploring Natural Language Processing in Model-To-Model Transformations},
author={Danenas, Paulius and Skersys, Tomas},
journal={IEEE Access},
year={2022},
volume={10},
pages={116942-116958},
doi={10.1109/ACCESS.2022.3219455}
}