Skip to content
forked from pytorch/csprng

Cryptographically secure pseudorandom number generators for PyTorch

License

Notifications You must be signed in to change notification settings

pbelevich/csprng

 
 

PyTorch/CSPRNG

torchcsprng is a PyTorch C++/CUDA extension that provides cryptographically secure pseudorandom number generators for PyTorch.

CircleCI

Design

torchcsprng generates a random 128-bit key on CPU using one of its generators and runs AES128 in CTR mode either on CPU or on GPU using CUDA to generate a random 128 bit state and apply a transformation function to map it to target tensor values. This approach is based on Parallel Random Numbers: As Easy as 1, 2, 3(John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw, D. E. Shaw Research). It makes torchcsprng both crypto-secure and parallel on CUDA and CPU.

CSPRNG architecture

Advantages:

  • The user can choose either seed-based(for testing) or random device based(fully crypto-secure) generators
  • One generator instance for both CPU and CUDA tensors(because the encryption key is always generated on CPU)
  • CPU random number generation is also parallel(unlike the default PyTorch CPU generator)

Features

torchcsprng exposes two methods to create crypto-secure and non-crypto-secure PRNGs:

Method to create PRNG Is crypto-secure? Has seed? Underlying implementation
create_random_device_generator(token: string=None) yes no See std::random_device and its constructor. The implementation in libstdc++ expects token to name the source of random bytes. Possible token values include "default", "rand_s", "rdseed", "rdrand", "rdrnd", "/dev/urandom", "/dev/random", "mt19937", and integer string specifying the seed of the mt19937 engine. (Token values other than "default" are only valid for certain targets.) If token=None then constructs a new std::random_device object with an implementation-defined token.
create_mt19937_generator(seed: int=None) no yes See std::mt19937 and its constructor. Constructs a mersenne_twister_engine object, and initializes its internal state sequence to pseudo-random values. If seed=None then seeds the engine with default_seed.

The following list of methods supports all forementioned PRNGs:

Kernel CUDA CPU
random_() yes yes
random_(to) yes yes
random_(from, to) yes yes
uniform_(from, to) yes yes
normal_(mean, std) yes yes
cauchy_(median, sigma) yes yes
log_normal_(mean, std) yes yes
geometric_(p) yes yes
exponential_(lambda) yes yes
randperm(n) yes* yes
  • the calculations are done on CPU and the result is copied to CUDA

Installation

CSPRNG works with Python 3.6/3.7/3.8 on the following operating systems and can be used with PyTorch tensors on the following devices:

Tensor Device Type Linux macOS MS Window
CPU Supported Supported Supported
CUDA Supported Not Supported Coming

Binary Installation

Anaconda:

OS CUDA
Linux 9.2

10.1

10.2

None
conda install torchcsprng cudatoolkit=9.2 -c pytorch

conda install torchcsprng cudatoolkit=10.1 -c pytorch

conda install torchcsprng cudatoolkit=10.2 -c pytorch

conda install torchcsprng cpuonly -c pytorch
macOS None conda install torchcsprng cpuonly -c pytorch
Windows None conda install torchcsprng cpuonly -c pytorch

pip:

OS CUDA
Linux 9.2

10.1

10.2

None
pip install torchcsprng==0.1.2+cu92 torch==1.6.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

pip install torchcsprng==0.1.2+cu101 torch==1.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

pip install torchcsprng torch

pip install torchcsprng==0.1.2+cpu torch==1.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
macOS None pip install torchcsprng torch
Windows None pip install torchcsprng torch -f https://download.pytorch.org/whl/torch_stable.html

Nightly builds:

Anaconda:

OS CUDA
Linux 9.2

10.1

10.2

None
conda install torchcsprng cudatoolkit=9.2 -c pytorch-nightly

conda install torchcsprng cudatoolkit=10.1 -c pytorch-nightly

conda install torchcsprng cudatoolkit=10.2 -c pytorch-nightly

conda install torchcsprng cpuonly -c pytorch-nightly
macOS None conda install torchcsprng cpuonly -c pytorch-nightly
Windows None conda install torchcsprng cpuonly -c pytorch-nightly

pip:

OS CUDA
Linux 9.2

10.1

10.2

None
pip install --pre torchcsprng -f https://download.pytorch.org/whl/nightly/cu92/torch_nightly.html

pip install --pre torchcsprng -f https://download.pytorch.org/whl/nightly/cu101/torch_nightly.html

pip install --pre torchcsprng -f https://download.pytorch.org/whl/nightly/cu102/torch_nightly.html

pip install --pre torchcsprng -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
macOS None pip install --pre torchcsprng -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
Windows None pip install --pre torchcsprng -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html

From Source

torchcsprng is a Python C++/CUDA extension that depends on PyTorch. In order to build CSPRNG from source it is required to have Python(>=3.6) with PyTorch(>=1.6.0) installed and C++ compiler(gcc/clang for Linux, XCode for macOS, Visual Studio for MS Windows). To build torchcsprng you can run the following:

python setup.py install

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is True. Additionally, it is possible to force building GPU support by setting the FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Getting Started

The torchcsprng API is available in torchcsprng module:

import torch
import torchcsprng as csprng

Create crypto-secure PRNG from /dev/urandom:

urandom_gen = csprng.create_random_device_generator('/dev/urandom')

Create empty boolean tensor on CUDA and initialize it with random values from urandom_gen:

torch.empty(10, dtype=torch.bool, device='cuda').random_(generator=urandom_gen)
tensor([ True, False, False,  True, False, False, False,  True, False, False],
       device='cuda:0')

Create empty int16 tensor on CUDA and initialize it with random values in range [0, 100) from urandom_gen:

torch.empty(10, dtype=torch.int16, device='cuda').random_(100, generator=urandom_gen)
tensor([59, 20, 68, 51, 18, 37,  7, 54, 74, 85], device='cuda:0',
       dtype=torch.int16)

Create non-crypto-secure MT19937 PRNG:

mt19937_gen = csprng.create_mt19937_generator()
torch.empty(10, dtype=torch.int64, device='cuda').random_(torch.iinfo(torch.int64).min, to=None, generator=mt19937_gen)
tensor([-7584783661268263470,  2477984957619728163, -3472586837228887516,
        -5174704429717287072,  4125764479102447192, -4763846282056057972,
         -182922600982469112,  -498242863868415842,   728545841957750221,
         7740902737283645074], device='cuda:0')

Create crypto-secure PRNG from default random device:

default_device_gen = csprng.create_random_device_generator()
torch.randn(10, device='cuda', generator=default_device_gen)
tensor([ 1.2885,  0.3240, -1.1813,  0.8629,  0.5714,  2.3720, -0.5627, -0.5551,
        -0.6304,  0.1090], device='cuda:0')

Create non-crypto-secure MT19937 PRNG with seed:

mt19937_gen = csprng.create_mt19937_generator(42)
torch.empty(10, device='cuda').geometric_(p=0.2, generator=mt19937_gen)
tensor([ 7.,  1.,  8.,  1., 11.,  3.,  1.,  1.,  5., 10.], device='cuda:0')

Recreate MT19937 PRNG with the same seed:

mt19937_gen = csprng.create_mt19937_generator(42)
torch.empty(10, device='cuda').geometric_(p=0.2, generator=mt19937_gen)
tensor([ 7.,  1.,  8.,  1., 11.,  3.,  1.,  1.,  5., 10.], device='cuda:0')

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

License

torchcsprng is BSD 3-clause licensed. See the license file here

About

Cryptographically secure pseudorandom number generators for PyTorch

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Batchfile 28.3%
  • C++ 23.1%
  • Python 19.9%
  • Shell 16.1%
  • NASL 6.9%
  • Cuda 4.1%
  • Other 1.6%