A tiny in-memory javascript database with indexing and sql like filters.
PixieDb perform all operations (insert, delete, get) in log(n) time.
Warning
Please keep in mind that PixieDb is still in under active development.
import { PixieDb } from "pixiedb";
const products = [
{ id: 1, name: "Apple", price: 5, category: "Fruit" },
{ id: 2, name: "Banana", price: 10, category: "Fruit" },
{ id: 3, name: "Grapes", price: 6, category: "Fruit" },
{ id: 4, name: "Orange", price: 8, category: "Fruit" },
{ id: 5, name: "Potato", price: 18, category: "Vegetable" },
{ id: 6, name: "Milk", price: 7, category: "Dairy" },
// ...
]
// provide unique key, data and indexes for better performance
// 3rd param data is optional can be load after using the load method
const pd = new PixieDb('id', ["price", "category"], products)
// or
const pd = new PixieDb<Product>('id', ["price", "category"]) // pass type if using typescript
pd.load(products) // to load data later
const byId = pd.select().eq("id", 2).single()
console.log(byId); // { id: 2, name: "Banana", price: 10, category: "Fruit" }
// can also pass array of fields to select method to pick only those fields/properties
const fruitBelow10 = pd.select(["id", "name", "price"]).eq("category", "Fruit").lte("price", 10).orderBy(["name", ["price", "desc"]]).range(2, 3).data()
console.log(fruitBelow10); // [{ id: 3, name: "Grapes", price: 6 }, ...]
const updatedBanana = pd.where().eq("name", "Banana").update({price: 100})
// [{ id: 2, name: "Banana", price: 100, category: "Fruit" }, ...]
// delete all docs where name equals "Apple"
const deletedApples = pd.where().eq("name", "Apple").delete()
// [{ id: 1, name: "Apple", price: 5, category: "Fruit"}, ...]
# using npm
npm install pixiedb
# using pnpm
pnpm add pixiedb
# using yarn
yarn add pixiedb
# using bun
bun add pixiedb
This is a class which create an PixieDb instance to use.
// pass type/interface if using typescript
const pd = new PixieDb<Product>('id', ["price", "category"])
// or with data
const pd = new PixieDb<Product>('id', ["price", "category"], products)
Used to import data without cloning (so don't mutate the data or clone before load). Pass true as second parameter to clear the previous data and indexes state. (default: false).
pd.load(products)
// or
pd.load(products, true)
// remove previous data and index state
Get single doc/row using key (primary key/unique id). Returns doc/row if present else undefined.
pd.get(2)
// { id: 2, name: "Banana", price: 10, category: "Fruit" }
Get single doc/row using key (primary key/unique id). Returns doc/row if present else undefined.
pd.select().eq("category", "Fruit").gte("price", 6).data()
// [{ id: 2, name: "Banana", price: 10, category: "Fruit" }, { id: 3, name: "Grapes", price: 6, category: "Fruit" }, ...]
pd.select(["id", "name", "price"]).eq("category", "Fruit").lte("price", 6).data()
// [{ id: 1, name: "Apple", price: 5 }, ...]
pd.select().eq("category", "Fruit").between("price", [6, 10]).data()
// [{ id: 2, name: "Banana", price: 10, category: "Fruit" }, { id: 3, name: "Grapes", price: 6, category: "Fruit" }, { id: 4, name: "Orange", price: 8, category: "Fruit" }, ...]
used to perform delete/update with complex filtering
// this will delete and return all the docs according to the filters
pd.where().eq("category", "Fruit").gte("price", 6).delete()
// [{ id: 2, name: "Banana", price: 10, category: "Fruit" }, { id: 3, name: "Grapes", price: 6, category: "Fruit" }, ...]
pd.where().eq("category", "Fruit").between("price", [6, 10]).update({price: 11})
// [{ id: 2, name: "Banana", price: 11, category: "Fruit" }, { id: 3, name: "Grapes", price: 11, category: "Fruit" }, { id: 4, name: "Orange", price: 11, category: "Fruit" }, ...]
Get all docs/rows ordered respect to primary key/unique id. Pass false to get all without clone (don't modify). default: true
pd.data()
// [{ id: 1, name: "Apple", price: 5, category: "Fruit" }, ...]
Get all docs/rows ordered respect to primary key/unique id. Pass false to get all without clone (don't modify). default: true
pd.select().count()
// 6
pd.select().eq("category", "Fruit").between("price", [6, 10]).count()
// 4
to close/quit/terminate the database and remove all data/indexes and fire "Q" ("quit") event. Pass true to not emit events. default: false
pd.close()
// or
pd.close(true) // doesn't fire event
return JSON of all data (without cloning), key and index names.
pd.toJSON()
// { key: "id", indexes: ["price", "category", {name: "id", unique: true}], data: [{ id: 1, name: "Apple", price: 10, category: "Fruit" }, ...]
// this will call the above toJSON method
JSON.stringify(pd)
- load docs
- get all docs
- get docs with key
- Events (load, change, insert, update, delete, quit)
- orderBy with multiple keys (sorting)
- single doc with filters
- count of docs with filters
- update of docs with filters
- delete of docs with filters
- filters
- eq (where value equal)
- neq (where value not equal)
- in (where value in)
- nin (where value not in)
- between (where value between to values)
- nbetween (where value not between to values)
- gt (where value greater than)
- gte (where value greater than or equal to)
- lt (where value less than)
- lte (where value less than or equal to)
- custom query method
- range offset (from) and count (limit of docs to return)