Skip to content

A CNN Text Classifier with a basic TensorFlow wrapper library

License

Notifications You must be signed in to change notification settings

piyush2896/CNN-Text-Classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CNN Text Classifier

This application is built by replicating work done in this paper here.

Dependencies

  1. Tensorflow
  2. Keras (Well, I wanted to avoid it entirely but had to use it for some data preprocessing :P)
  3. Matplotlib
  4. NumPy

Usage

usage: train.py [-h] [--src SRC] [--e_src E_SRC] [--ckpt_path CKPT_PATH]
                [--s_len S_LEN] [--dim DIM] [--nb_words NB_WORDS]
                [--model_type MODEL_TYPE] [-h_file H_FILE]

optional arguments:
  -h, --help            show this help message and exit
  --src SRC             Path to directory containing text file and label file
                        dataset. Default - './datasets/'
  --e_src E_SRC         File containing embedding vectors. Default -
                        './embeddings/e_vectors.txt'
  --ckpt_path CKPT_PATH
                        Path to directory where the checkpoint of the model
                        should be stored. If the directory doesn't exist, it
                        will be created. Default - './checkpoint/'
  --s_len S_LEN         Maximum length of the input sequence. Default - 64
  --dim DIM             Dimensions of the embedding vector space to be
                        utilized. Default - 100
  --nb_words NB_WORDS   Numbers of words to keep from the dataset.
  --model_type MODEL_TYPE
                        Name of the model.Possible values - 'rand', 'static',
                        'non-static'Check CNN sentence classifier paper here
                        for details -> https://arxiv.org/abs/1408.5882.
                        Default - 'rand'
  -h_file H_FILE        In case of default model type a tunning_params.txt
                        file is required. The file should contain
                        hyperparameters in following order each on new line.
                        Learning Rate, Num Epochs, Mini-batch size, Device -
                        CPU/GPU. Default - 0.001, 10, 32, GPU.

Model

Releases

No releases published

Packages

No packages published

Languages