Skip to content

A full-featured transparent data preparation routine from raw data to POMMES model inputs

License

Notifications You must be signed in to change notification settings

pommes-public/pommesdata

Repository files navigation

pommesdata

A full-featured transparent data preparation routine from raw data to POMMES model inputs

This is the data preparation routine of the fundamental power market model POMMES (POwer Market Model of Energy and reSources).
Please navigate to the section of interest to find out more.

Contents

Introduction

POMMES itself is a cosmos consisting of a dispatch model, a data preparation routine (stored in this repository and described here) and an investment model for the German wholesale power market. The model was originally developed by a group of researchers and students at the chair of Energy and Resources Management of TU Berlin and is now maintained by a group of alumni and open for other contributions.

If you are interested in the actual dispatch or investment model, please find more information here:

  • pommesdispatch: A bottom-up fundamental power market model for the German electricity sector
  • pommesinvest: A multi-period integrated investment and dispatch model for the German power sector (upcoming).

Documentation

The data preparation is mainly carried out in this jupyter notebook. The data sources used as well as the calculation and transformation steps applied are described in a transparent manner. In addition to that, there is a documentation of pommesdata on readthedocs. This in turn contains a documentation of the functions and classes used for data preparation.

Installation and usage

There are two use cases for using pommesdata:

  1. Using readily prepared output data sets as pommesdispatch or pommesinvest inputs
  2. Understanding and manipulating the data prep process (inspecting / developing)

If you are only interested in the readily prepared data sets (option 1), you can obtain them from zenodo and download it here: https://zenodo.org/

If you are interested in understanding the data preparation process itself or if you wish to include own additions, changes or assumptions, you can fork and then clone the repository, in order to copy the files locally by typing

git clone https://github.com/pommes-public/pommesdata.git

After cloning the repository, you have to install the required dependencies. Make sure you have conda installed as a package manager. If not, you can download it here. Open a command shell and navigate to the folder where you copied the environment to. Use the following command to install dependencies

conda env create -f pommesdata_explicit.yml

Activate your environment by typing

conda activate pommesdata_explicit

Note: Dependencies have not been regularly updated. Thus, use the listed explicit dependencies from pommesdata_explicit.yml for now and not the environment.yml file.

Contributing

Every kind of contribution or feedback is warmly welcome.
We use the GitHub issue management as well as pull requests for collaboration.

We try to stick to the PEP8 coding standards.

The jupyter notebook for the data preparation does not (necessarily have to) meet PEP8 standards, though readability should be made sure.

Authors

  • Authors of pommesdata are Johannes Kochems and Yannick Werner. It is maintained by Johannes Kochems.
  • Florian Maurer contributed to the source code by providing a bug fix.
  • All people mentioned below contributed to early-stage versions or predecessors of POMMES or ideally supported it.

List of contributors to POMMES

The following people have contributed to POMMES. Most of these contributions belong to early-stage versions and are not part of the actual source code. Nonetheless, all contributions shall be acknowledged and the full list is provided for transparency reasons.

The main contributors are stated on top, the remainder is listed in alphabetical order.

Name Contribution
Johannes Kochems major development & conceptualization
conceptualization, development of all investment-related parts; development of main data preparation routines (esp. future projection for all components, RES tender data and LCOE estimates, documentation), architecture, publishing process, maintenance
Yannick Werner major development & conceptualization
conceptualization, development of main data preparation routines (status quo data for all components, detailed RES, interconnector and hydro data), architecture
Benjamin Grosse data collection for conventional power plants in early development stage, ideal support and conceptionel counseling
Carla Spiller data collection for conventional power plants in early stage development as an input to pommesdata; co-development of rolling horizon dispatch modelling in predecessor of pommesdispatch
Christian Fraatz data collection for conventional power plants in early stage development as an input to pommesdata
Conrad Nicklisch data collection for RES in early stage development as an input to pommesdata
Daniel Peschel data collection on CHP power plants as an input to pommesdata
Dr. Johannes Giehl conceptionel support and research of data licensing; conceptionel support for investment modelling in pommesinvest
Dr. Paul Verwiebe development of small test models as a predecessor of POMMES
Fabian Büllesbach development of a predecessor of the rolling horizon modeling approach in pommesdispatch
Flora von Mikulicz-Radecki extensive code and functionality testing in an early development stage for predecessors of pommesdispatch and pommesinvest
Florian Maurer support with / fix for python dependencies
Hannes Kachel development and analysis of approaches for complexity reduction in a predecessor of pommesinvest
Julian Endres data collection for costs and conventional power plants in early stage development
Julien Faist data collection for original coal power plant shutdown and planned installation of new power plants for pommesdata; co-development of a predecessor of pommesinvest
Leticia Encinas Rosa ata collection for conventional power plants in early stage development as an input to pommesdata
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer funding, enabling and conceptual support
Robin Claus data collection for RES in early stage development as an input to pommesdata
Sophie Westphal data collection for costs and conventional power plants in early stage development as an input for pommesdata
Timona Ghosh data collection for interconnector data as an input to pommesdata

Citing

Data sets created with pommesdata are shared at zenodo. If you use these, please refer to the citation information given at zenodo.

If you are using pommesdata for your own analyses, we recommend citing as:
Kochems, J. & Wener, Y. (2024): pommesdata. A full-featured transparent data preparation routine from raw data to POMMES model inputs. https://github.com/pommes-public/pommesdata, accessed YYYY-MM-DD.

We furthermore recommend naming the version tag or the commit hash used for the sake of transparency and reproducibility.

Also see CITATION.cff for citation information. Licensing information stated in the CITATION.cff is only applicable for the code itself, see license.

License

Licensing for the code - in the following referred to as software - and the input data used differs. For the licensing of the data, please see the detailed list of data sets below.

Software (code)

Copyright 2024 pommes developer group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Data (input data)

The following table contains the primary data sources used to create data sets used for POMMES models. The licensing of the different sources differs and the table should provide an overview over the licences used. Thus, we cannot publish all the data under an open license, such as a Creative Commons Attribution license. Please be aware that some data might be subject to copyright.

institution data set license download link
OPSD data package conventional power plants MIT License for software; for dataset-specific license see hyperlink https://doi.org/10.25832/conventional_power_plants/2018-12-20
ÜNB / BNetzA power plant list free to use, license-free according to §5 Abs. 1 UrhG https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/Kraftwerksliste_%C3%9CNB_Entwurf_Szenariorahmen_2030_V2019_2_0_0.pdf
FZJ / KIT / FIAS FRESNA (PyPSA-EUR) PP matching GPLv3 for software, for dataset-specific license see hyperlink https://doi.org/10.5281/zenodo.3358985
tmrowco bidding zone geometries MIT License electricitymaps/electricitymaps-contrib#1383
UBA new-built power plants usage of data accordant to § 12a EGovG permitted https://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/4_tab_genehmigte-in_genehmigung-kraftwerksprojekte_2019-04-04.pdf
BDEW new-built power plants All rights reserved https://www.bdew.de/media/documents/PI_20190401_BDEW-Kraftwerksliste.pdf
BNetzA new-built & decommissioned power plants free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
Energie SaarLorLux new-built power plant All rights reserved https://www.energie-saarlorlux.com/unternehmen/mehr-gutes-klima/unsere-co2-projekte/
ENTSOE new-built power plants CC BY 4.0 https://tyndp.entsoe.eu/maps-data
BNetzA threshold for new-built power plants free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Versorgungssicherheit/Berichte_Fallanalysen/BNetzA_Netzstabilitaetsanlagen13k.pdf?__blob=publicationFile&v=3
DIW efficiency estimates for power plants All rights reserved https://www.diw.de/documents/publikationen/73/diw_01.c.440963.de/diw_datadoc_2014-072.pdf
BNetzA power plants shutdown free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/KWSAL/KWSAL
juris nuclear power plants shutdown free to use, license-free according to §5 Abs. 1 UrhG https://www.gesetze-im-internet.de/atg/
juris coal power plants shutdown free to use, license-free according to §5 Abs. 1 UrhG https://www.gesetze-im-internet.de/kvbg/index.html
KWSB coal power plants shutdown CC BY-ND 3.0 DE https://www.bmwi.de/Redaktion/DE/Downloads/A/abschlussbericht-kommission-wachstum-strukturwandel-und-beschaeftigung.pdf?__blob=publicationFile
ENTSOE Actual Generation per Generation Unit Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show
ENTSOE Water Reservoirs and Hydro Storage Plants Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs https://transparency.entsoe.eu/generation/r2/waterReservoirsAndHydroStoragePlants/show
ENTSOE Actual Generation per Production Type Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show
UBA specific emission factors Use pursuant to § 12a EGovG for pre-calculations https://www.umweltbundesamt.de/publikationen/entwicklung-der-spezifischen-kohlendioxid-6
OPSD time series data MIT License for software; for dataset-specific license see hyperlink https://data.open-power-system-data.org/time_series/2020-10-06
ÜNB Anlagenstammdaten data owned by the German TSO https://www.netztransparenz.de/EEG/Anlagenstammdaten
ÜNB EEG-Bewegungsdaten zur Jahresabrechnung 2017 data owned by the German TSO https://www.netztransparenz.de/EEG/Jahresabrechnungen
IRENA installed RES capacities All rights reserved, data used for pre-calculations https://www.irena.org/Statistics/Download-Data
ENTSO-E Installed Capacity per Production Type Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
Prognos et al. study on RES capacities for DE All rights reserved, data used for pre calculations https://www.agora-energiewende.de/veroeffentlichungen/klimaneutrales-deutschland/
BNetzA RES tender results solarPV free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
BNetzA RES tender results wind onshore free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Ausschreibungen/Wind_Onshore/BeendeteAusschreibungen/BeendeteAusschreibungen_node.html
BNetzA RES tender results common tenders free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Ausschreibungen/Wind_Onshore/BeendeteAusschreibungen/BeendeteAusschreibungen_node.html
BNetzA RES tender results offshore free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1_GZ/BK6-GZ/2017/BK6-17-001/Ergebnisse_erste_Ausschreibung.pdf?__blob=publicationFile&v=3
BNetzA RES tender results offshore free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1_GZ/BK6-GZ/2018/BK6-18-001/Ergebnisse_zweite_ausschreibung.pdf?__blob=publicationFile&v=3
BNetzA solarPV installations (and remuneration) free to use, license-free according to §5 Abs. 1 UrhG https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/ArchivDatenMeldgn/ArchivDatenMeldgn_node.html
ÜNB capacity balance All rights reserved, data used for pre-calculations https://www.netztransparenz.de/portals/1/Bericht_zur_Leistungsbilanz_2019.pdf
DIW fuel costs uranium 2017 All rights reserved https://www.diw.de/documents/publikationen/73/diw_01.c.440963.de/diw_datadoc_2014-072.pdf
DIW operation costs All rights reserved https://www.diw.de/documents/publikationen/73/diw_01.c.440963.de/diw_datadoc_2014-072.pdf
Öko Institut fuel costs lignite 2017 All rights reserved https://www.oeko.de/oekodoc/1995/2014-015-de.pdf
Destatis fuel costs hardcoal 2017 CC BY 2.0 DE https://www-genesis.destatis.de/genesis/online?&sequenz=tabelleErgebnis&selectionname=43511-0001#abreadcrumb
BAFA fuel costs natural gas 2017 CC BY-ND 3.0 DE https://www.bafa.de/SharedDocs/Downloads/DE/Energie/egas_aufkommen_export_1991.html
BMWI fuel costs heating oil 2017 CC BY-ND 3.0 DE https://www.bmwi.de/Redaktion/DE/Artikel/Energie/energiedaten-gesamtausgabe.html
r2b transport costs CC BY-ND 3.0 DE https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/definition-und-monitoring-der-versorgungssicherheit-an-den-europaeischen-strommaerkten.pdf?__blob=publicationFile&v=18
Fraunhofer ISI operation costs All rights reserved https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf

Prepared data sets (data sets created with pommesdata)

The data is provided with no license. Please refer to the above licensing information.

About

A full-featured transparent data preparation routine from raw data to POMMES model inputs

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published