Install TensorFlow 2.0 and other dependencies:
# CUDA 11.8 + cuDNN 8.6 + Python 3.10
conda env create -f conda-cu11-py310.yaml
# Apple Silicon + Python 3.11
conda env create -f conda-apple-py311.yaml
Uninstall:
conda env remove --name py311-apple-tfrcnn
Note that environment variables such as LD_LIBRARY_PATH
must be set properly
on a GPU machine:
set -Ux CUDNN_PATH $CONDA_PREFIX/lib/python3.1/site-packages/nvidia/cudnn
set -Ux LD_LIBRARY_PATH $LD_LIBRARY_PATH $CONDA_PREFIX/lib $CUDNN_PATH/lib
set -Ux XLA_FLAGS --xla_gpu_cuda_data_dir=$CONDA_PREFIX
Train the RPN part:
tf-rcnn train-rpn --epochs=10 --batch-size=8
Predict the region of interest (ROI):
tf-rcnn predict-rpn --images=20
Result of the ROI prediction after 5 epochs:
Performance of the ROI prediction after 5 epochs: