Skip to content

prediction2020/explainable-predictive-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Framework for predictive modelling on tabular datasets with xAI

This repository contains the implementation and evaluation of traditional (GLM, Lasso and Elastic Net) and non-traditional (Tree Boosting, SVM, Naive Bayes and Multilayer Perceptron) machine learning algorithms for classification. Additionally, for each computed model explanations (Shapley values for all, weights for GLM, Taylor Decomposition for MLP) are calculated and visualized. Classification performance is evaluated using 10 different measures.

Publications

The framework has been applied in these publications:

Dengler, Nora Franziska, Vince Istvan Madai, Meike Unteroberdörster, Esra Zihni, Sophie Charlotte Brune, Adam Hilbert, Michelle Livne, Stefan Wolf, Peter Vajkoczy, and Dietmar Frey. 2021. “Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage: A Comparison of Machine Learning Methods and Established Clinico-Radiological Scores.” Neurosurgical Review https://link.springer.com/article/10.1007/s10143-020-01453-6 (open access)

Zihni, Esra, Vince Istvan Madai, Michelle Livne, Ivana Galinovic, Ahmed A. Khalil, Jochen B. Fiebach, and Dietmar Frey. 2020. “Opening the Black Box of Artificial Intelligence for Clinical Decision Support: A Study Predicting Stroke Outcome.” PLOS ONE https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231166 (open access)

Manual

Manual to this framework can be found here.

License

This project is licensed under the MIT license.

Contributors

Esra Zihni, Adam Hilbert

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages