Skip to content

psipred/p53_docking

Repository files navigation

generate_peptides.py

  1. makes sdf files of all combinations of n aminoacids (n=3)
python3 generate_peptides.py

compare_diffdock.py

  1. compares rank1_confidence scores for pairs of inference_steps and samples_per_complex (Output:test2.csv)
python3 compare_diffdock.py
  1. runs diffdock for all n peptides (n=8000)(Output: fin_results, dd_fin.csv)
python3 diffdock_final.py
  1. Calculates the minimum distance between the heavy atoms of p53 and the peptide. Specify the peptide as the input. (Input: peptide directory, output: dd_distance.csv)
python3 dd_distance.py
  1. Generates a 3D scatter plot for confidence_score vs samples_per_complex vs inference_steps (Input:dd_test2.csv, output:graph)
python3 plot_3d.py
  1. Calculates the mean and standard deviation for the distance between the ranks (Input: peptides from fin_results, output:dd_stats2.csv)
python3 dd_rank.py
  1. calculates the maximum length of the peptides (Input: rank1_confidence of peptides, Output: pep_length.csv)
python3 pep_length.py
  1. Plots a graph of samples_per_complex vs confidence score. Can be used for inference_steps by changing the y-axis. (Input: dd_test2.csv, Output: graph)
python3 plot_surface.py
  1. Generates a list of all the peptides with a mean distance less than the length of the peptide (good peptides).Can be used to generate the list of bad peptides by changing the angle bracket. (Takes dd_stats2.csv as the input file, can output good_pep.csv)
python3 compare_stats.py
  1. Plots a histogram for the mean distance of the 20 ranks of a specific peptide. Specify the peptide name and path to the directory in the input. (Input: peptide directory, output: graph)
python3 plot_mean.py
  1. Plots a histogram of the mean distance for all the 'bad peptides'. Change the input csv file to plot for the 'good peptides'. (Input:bad_pep.csv/good_pep.csv, Output:graph)(histogram generated is messy and random)
python3 plot_all_means.py

Project space directory guide -:

peptides:sdf files of the 8000 peptides

fin_results: results output of the final diffdock run for the 8000 peptides

csvs: dd_fin- list of confidence scores for 8000 peptides,
dd_test,dd_test2- inference_steps and samples_per_complex pairs along with confidence score of 3,20 peptides (grid search),
dd_stats2- Mean distance, standard deviation and confidence scores of 8000 peptides
pep_length- Maximum length of the 8000 peptides
bad_pep- list of 'bad' peptides with mean dist and confidence score, good_pep- list of 'good' peptides with mean dist and confidence score

pep_graphs: svg files of histograms of the mean distance for GAA, GSN, LMC and GWC + word file for the histograms of all peptides, bad peptides and good peptides
pep_pymol: pymol files for GAA, GSN, LMC and GWC
(GAA- mean distance lower than the peptide length (good peptide) and narrow standard deviation.
GSN- mean distance shorter than the peptide length (good peptide) but broad standard deviation.
LMC- mean distance longer than the peptide length (bad peptide) and broad standard deviation.
GWC- mean distance longer than the peptide length (bad peptide) but narrow standard deviation.)

About

Project code for Chris Morris collab

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages