Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Relax tensorflow version limit #389

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions econml/iv/nnet/_deepiv.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,9 +93,13 @@ def mog_loss_model(n_components, d_t):
# LL = C - log(sum(pi_i/sig^d * exp(-d2/(2*sig^2))))
# Use logsumexp for numeric stability:
# LL = C - log(sum(exp(-d2/(2*sig^2) + log(pi_i/sig^d))))
# TODO: does the numeric stability actually make any difference?
def make_logloss(d2, sig, pi):
return -K.logsumexp(-d2 / (2 * K.square(sig)) + K.log(pi / K.pow(sig, d_t)), axis=-1)
# logsumexp doesn't exist in keras 2.4; simulate it
values = - d2 / (2 * K.square(sig)) + K.log(pi / K.pow(sig, d_t))
# logsumexp(a,b,c) = log(exp(a)+exp(b)+exp(c)) = log((exp(a-k)+exp(b-k)+exp(c-k))*exp(k))
# = log((exp(a-k)+exp(b-k)+exp(c-k))) + k
mx = K.max(values, axis=-1)
return -K.log(K.sum(K.exp(values - L.Reshape((-1, 1))(mx)), axis=-1)) - mx

ll = L.Lambda(lambda dsp: make_logloss(*dsp), output_shape=(1,))([d2, sig, pi])

Expand Down Expand Up @@ -350,7 +354,7 @@ def fit(self, Y, T, X, Z, *, inference=None):
model.add_loss(L.Lambda(K.mean)(ll))
model.compile(self._optimizer)
# TODO: do we need to give the user more control over other arguments to fit?
model.fit([Z, X, T], [], **self._first_stage_options)
model.fit([Z, X, T], **self._first_stage_options)

lm = response_loss_model(lambda t, x: self._h(t, x),
lambda z, x: Model([z_in, x_in],
Expand All @@ -365,7 +369,7 @@ def fit(self, Y, T, X, Z, *, inference=None):
response_model.add_loss(L.Lambda(K.mean)(rl))
response_model.compile(self._optimizer)
# TODO: do we need to give the user more control over other arguments to fit?
response_model.fit([Z, X, Y], [], **self._second_stage_options)
response_model.fit([Z, X, Y], **self._second_stage_options)

self._effect_model = Model([t_in, x_in], [self._h(t_in, x_in)])

Expand Down
26 changes: 23 additions & 3 deletions econml/tests/test_deepiv.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,27 @@ def test_stop_grad(self):
model = keras.Model([x_input, y_input, z_input], [loss])
model.add_loss(K.mean(loss))
model.compile('nadam')
model.fit([np.array([[1]]), np.array([[2]]), np.array([[0]])], [])
model.fit([np.array([[1]]), np.array([[2]]), np.array([[0]])])

def test_mog_loss(self):
inputs = [keras.layers.Input(shape=s) for s in [(3,), (3, 2), (3,), (2,)]]
ll_model = keras.engine.Model(inputs, mog_loss_model(3, 2)(inputs))

for n in range(10):
ps = -np.log(np.random.uniform(size=(3,)))
pi = ps / np.sum(ps)
mu = np.random.normal(size=(3, 2))
sig = np.exp(np.random.normal(size=3,))
t = np.random.normal(size=(2,))

pred = ll_model.predict([pi.reshape(1, 3), mu.reshape(1, 3, 2), sig.reshape(1, 3), t.reshape(1, 2)])

# LL = C - log(sum(pi_i/sig^d * exp(-d2/(2*sig^2))))
d = mu - t.reshape(-1, 2)
d2 = np.sum(d * d, axis=-1)
ll = -np.log(np.sum(pi / (sig * sig) * np.exp(-d2 / (2 * sig * sig)), axis=0))

assert np.allclose(ll, pred[0])

@pytest.mark.slow
def test_deepiv_shape(self):
Expand Down Expand Up @@ -500,7 +520,7 @@ def norm(lr):
model = keras.engine.Model([x_input, t_input], [ll])
model.add_loss(K.mean(ll))
model.compile('nadam')
model.fit([x, t], [], epochs=5)
model.fit([x, t], epochs=5)

# For some reason this doesn't work at all when run against the CNTK backend...
# model.compile('nadam', loss=lambda _,l:l)
Expand Down Expand Up @@ -559,7 +579,7 @@ def sample(n):
model = keras.engine.Model([x_input, t_input], [ll])
model.add_loss(K.mean(ll))
model.compile('nadam')
model.fit([x, t], [], epochs=100)
model.fit([x, t], epochs=100)

model2 = keras.engine.Model([x_input], [pi, mu, sig])
import matplotlib
Expand Down
8 changes: 4 additions & 4 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -60,14 +60,14 @@ automl =
; azureml-sdk[explain,automl] == 1.0.83
azure-cli
tf =
keras < 2.4
tensorflow > 1.10, < 2.3
keras
tensorflow > 1.10, < 2.4
plt =
matplotlib
all =
azure-cli
keras < 2.4
tensorflow > 1.10, < 2.3
keras
tensorflow > 1.10, < 2.4
matplotlib

[options.packages.find]
Expand Down