Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Upgrade TRT to 8.4 #1152

Merged
merged 13 commits into from
Jul 23, 2022
Merged

feat: Upgrade TRT to 8.4 #1152

merged 13 commits into from
Jul 23, 2022

Conversation

peri044
Copy link
Collaborator

@peri044 peri044 commented Jun 30, 2022

Description

Upgrade TRT to 8.4

Type of change

  • New feature (non-breaking change which adds functionality)

Checklist:

  • My code follows the style guidelines of this project (You can use the linters)
  • I have performed a self-review of my own code
  • I have commented my code, particularly in hard-to-understand areas and hacks
  • I have made corresponding changes to the documentation
  • I have added tests to verify my fix or my feature
  • New and existing unit tests pass locally with my changes
  • I have added the relevant labels to my PR in so that relevant reviewers are notified

BREAKING CHANGE: Removing deprecated settings like min timing iterations
Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
@peri044 peri044 requested a review from narendasan June 30, 2022 22:59
@github-actions github-actions bot added component: build system Issues re: Build system component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: core Issues re: The core compiler component: tests Issues re: Tests labels Jun 30, 2022
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to C++ style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to C++ style guidelines

// Lower threshold because FP16
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-1));
}
// TEST(Partitioning, ComputeResNet50FallbackGraphCorrectly) {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@bowang007 Can you work with @peri044 here to determine the best testing strategy here?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sure.

@narendasan
Copy link
Collaborator

@peri044 can you open a second PR into release/1.1 for the 1.1.1 release?

Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to C++ style guidelines

@peri044
Copy link
Collaborator Author

peri044 commented Jul 6, 2022

@peri044 can you open a second PR into release/1.1 for the 1.1.1 release?

#1158

@ncomly-nvidia ncomly-nvidia added the release: v1.2 Tagged to be included in v1.2 label Jul 15, 2022
@github-actions github-actions bot requested a review from narendasan July 15, 2022 01:16
…A memory options

Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
@github-actions github-actions bot added component: api [Python] Issues re: Python API component: api [C++] Issues re: C++ API documentation Improvements or additions to documentation labels Jul 22, 2022
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 310f23d..a171190 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -67,7 +67,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index 688aaa7..d123ee4 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 075af18..a0a91be 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

…nd added DLA memory size configurations

Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
Signed-off-by: Dheeraj Peri <peri.dheeraj@gmail.com>
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index 688aaa7..d123ee4 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 3599ab9..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -319,7 +315,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -331,7 +328,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -385,7 +383,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -397,7 +396,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

@peri044 peri044 merged commit 92e32aa into master Jul 23, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cla signed component: api [C++] Issues re: C++ API component: api [Python] Issues re: Python API component: build system Issues re: Build system component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: core Issues re: The core compiler component: tests Issues re: Tests documentation Improvements or additions to documentation release: v1.2 Tagged to be included in v1.2
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants