-
Notifications
You must be signed in to change notification settings - Fork 22.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fixed arange decomp for float dtype #123445
Closed
Closed
+68
−13
Commits on Apr 5, 2024
-
Fixed arange decomp for float dtype
Description: Arange graph and C++ generated code are not optimal when arange is created directly using float32 dtype: ```python import torch def func(x): s = x.shape[-1] a = torch.arange(s, dtype=torch.float32) return s + a c_func = torch.compile(func) out = c_func(torch.rand(10)) ``` Graph on `main`: ``` ===== Forward graph 0 ===== /pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module): def forward(self): # File: check_arange_decomp.py:8 in func, code: a = torch.arange(s, dtype=torch.float32) iota: "i64[10]" = torch.ops.prims.iota.default(10, start = 0, step = 1, dtype = torch.int64, device = device(type='cpu'), requires_grad = False) convert_element_type: "f64[10]" = torch.ops.prims.convert_element_type.default(iota, torch.float64); iota = None mul: "f64[10]" = torch.ops.aten.mul.Tensor(convert_element_type, 1); convert_element_type = None add: "f64[10]" = torch.ops.aten.add.Tensor(mul, 0); mul = None convert_element_type_1: "f32[10]" = torch.ops.prims.convert_element_type.default(add, torch.float32); add = None # File: check_arange_decomp.py:9 in func, code: return s + a add_1: "f32[10]" = torch.ops.aten.add.Tensor(convert_element_type_1, 10); convert_element_type_1 = None return (add_1,) ``` and C++ ```c++ extern "C" void kernel(float* out_ptr0) { { #pragma GCC ivdep for(long x0=static_cast<long>(0L); x0<static_cast<long>(10L); x0+=static_cast<long>(1L)) { auto tmp0 = c10::convert<long>(x0); auto tmp1 = c10::convert<double>(tmp0); // <---- useless ops auto tmp2 = static_cast<double>(1.0); // <---- auto tmp3 = decltype(tmp1)(tmp1 * tmp2); // <---- auto tmp4 = static_cast<double>(0.0); // <---- auto tmp5 = decltype(tmp3)(tmp3 + tmp4); // <---- auto tmp6 = c10::convert<float>(tmp5); auto tmp7 = static_cast<float>(10.0); auto tmp8 = decltype(tmp6)(tmp6 + tmp7); out_ptr0[static_cast<long>(x0)] = tmp8; } } } ``` However, if we manually create arange on i64 and then put to float32, generated graph and C++ code are more natural and benefit of a speed-up. ```python import torch def func(x): s = x.shape[-1] a = torch.arange(s).to(dtype=torch.float32) return s + a c_func = torch.compile(func) out = c_func(torch.rand(10)) ``` Graph on `main`: ``` ===== Forward graph 0 ===== /pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module): def forward(self): # File: check_arange_decomp.py:14 in func, code: a = torch.arange(s).to(dtype=torch.float32) iota: "i64[10]" = torch.ops.prims.iota.default(10, start = 0, step = 1, dtype = torch.int64, device = device(type='cpu'), requires_grad = False) convert_element_type: "f32[10]" = torch.ops.prims.convert_element_type.default(iota, torch.float32); iota = None # File: check_arange_decomp.py:15 in func, code: return s + a add: "f32[10]" = torch.ops.aten.add.Tensor(convert_element_type, 10); convert_element_type = None return (add,) ``` C++ on `main` ```c++ extern "C" void kernel(float* out_ptr0) { { #pragma GCC ivdep for(long x0=static_cast<long>(0L); x0<static_cast<long>(10L); x0+=static_cast<long>(1L)) { auto tmp0 = c10::convert<long>(x0); auto tmp1 = c10::convert<float>(tmp0); auto tmp2 = static_cast<float>(10.0); auto tmp3 = decltype(tmp1)(tmp1 + tmp2); out_ptr0[static_cast<long>(x0)] = tmp3; } } } ``` For example, the speed-up seen on upsample_nearest2d on cpu: ``` [----------------------------------------------------------------------------------------------------------------------------------------------- Interpolate, cpu ----------------------------------------------------------------------------------------------------------------------------------------------] | Eager (2.3.0a0+gitb4324ed) PR | Compiled (2.3.0a0+gitb4324ed) PR | Compiled (2.3.0a0+git0d1e705) Nightly | speed-up PR vs Nightly | Eager (2.3.0a0+git0d1e705) Nightly 1 threads: ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Input (1, 3, 500, 400), torch.uint8, torch.contiguous_format | mode: nearest, align_corners: None, osize: (256, 256) | 287.988 (+-10.399) | 200.034 (+-8.630) | 285.143 (+-8.412) | 1.425 (+-0.000) | 287.991 (+-11.302) Input (1, 3, 500, 400), torch.uint8, torch.channels_last | mode: nearest, align_corners: None, osize: (256, 256) | 697.206 (+-27.033) | 171.650 (+-7.381) | 193.280 (+-5.840) | 1.126 (+-0.000) | 701.642 (+-26.461) Input (1, 3, 500, 400), torch.float32, torch.contiguous_format | mode: nearest, align_corners: None, osize: (256, 256) | 149.149 (+-6.045) | 222.780 (+-6.852) | 299.968 (+-12.354) | 1.346 (+-0.000) | 145.055 (+-7.232) Input (1, 3, 500, 400), torch.float32, torch.channels_last | mode: nearest, align_corners: None, osize: (256, 256) | 596.741 (+-27.970) | 205.923 (+-8.648) | 233.912 (+-7.742) | 1.136 (+-0.000) | 598.000 (+-25.630) Input (4, 3, 500, 400), torch.uint8, torch.contiguous_format | mode: nearest, align_corners: None, osize: (256, 256) | 1095.734 (+-51.658) | 700.850 (+-24.852) | 1044.255 (+-38.216) | 1.490 (+-0.000) | 1097.977 (+-35.521) Input (4, 3, 500, 400), torch.uint8, torch.channels_last | mode: nearest, align_corners: None, osize: (256, 256) | 2741.813 (+-122.917) | 583.073 (+-16.998) | 665.029 (+-36.331) | 1.141 (+-0.000) | 2722.388 (+-116.263) Input (4, 3, 500, 400), torch.float32, torch.contiguous_format | mode: nearest, align_corners: None, osize: (256, 256) | 578.183 (+-37.266) | 833.295 (+-42.264) | 1131.341 (+-54.710) | 1.358 (+-0.000) | 584.953 (+-45.549) Input (4, 3, 500, 400), torch.float32, torch.channels_last | mode: nearest, align_corners: None, osize: (256, 256) | 2332.508 (+-103.556) | 840.194 (+-47.664) | 935.625 (+-47.467) | 1.114 (+-0.000) | 2334.314 (+-91.644) Input (1, 3, 1200, 1300), torch.uint8, torch.contiguous_format | mode: nearest, align_corners: None, osize: (200, 300) | 272.631 (+-11.348) | 195.988 (+-5.748) | 274.021 (+-9.475) | 1.398 (+-0.000) | 272.752 (+-12.716) Input (1, 3, 1200, 1300), torch.uint8, torch.channels_last | mode: nearest, align_corners: None, osize: (200, 300) | 640.409 (+-25.465) | 164.773 (+-7.372) | 185.018 (+-8.349) | 1.123 (+-0.000) | 639.390 (+-30.761) Input (1, 3, 1200, 1300), torch.float32, torch.contiguous_format | mode: nearest, align_corners: None, osize: (200, 300) | 158.602 (+-6.593) | 220.478 (+-6.809) | 286.376 (+-8.981) | 1.299 (+-0.000) | 158.557 (+-6.143) Input (1, 3, 1200, 1300), torch.float32, torch.channels_last | mode: nearest, align_corners: None, osize: (200, 300) | 548.903 (+-22.889) | 202.788 (+-9.158) | 227.404 (+-8.995) | 1.121 (+-0.000) | 554.096 (+-21.330) Input (4, 3, 1200, 1300), torch.uint8, torch.contiguous_format | mode: nearest, align_corners: None, osize: (200, 300) | 1036.061 (+-35.285) | 680.728 (+-30.925) | 986.254 (+-42.732) | 1.449 (+-0.000) | 1038.718 (+-43.070) Input (4, 3, 1200, 1300), torch.uint8, torch.channels_last | mode: nearest, align_corners: None, osize: (200, 300) | 2504.520 (+-125.805) | 550.067 (+-21.383) | 628.000 (+-27.589) | 1.142 (+-0.000) | 2523.134 (+-113.336) Input (4, 3, 1200, 1300), torch.float32, torch.contiguous_format | mode: nearest, align_corners: None, osize: (200, 300) | 1058.188 (+-57.853) | 1216.427 (+-76.160) | 1380.231 (+-98.939) | 1.135 (+-0.000) | 1057.031 (+-66.075) Input (4, 3, 1200, 1300), torch.float32, torch.channels_last | mode: nearest, align_corners: None, osize: (200, 300) | 2305.911 (+-116.864) | 1080.189 (+-79.934) | 1141.561 (+-67.959) | 1.057 (+-0.000) | 2306.606 (+-121.544) Input (1, 3, 300, 400), torch.uint8, torch.contiguous_format | mode: nearest, align_corners: None, osize: (600, 700) | 1689.489 (+-60.579) | 1077.401 (+-44.948) | 1634.264 (+-64.340) | 1.517 (+-0.000) | 1693.945 (+-67.998) Input (1, 3, 300, 400), torch.uint8, torch.channels_last | mode: nearest, align_corners: None, osize: (600, 700) | 4198.368 (+-179.096) | 886.656 (+-30.355) | 1028.568 (+-46.310) | 1.160 (+-0.000) | 4174.351 (+-141.020) Input (1, 3, 300, 400), torch.float32, torch.contiguous_format | mode: nearest, align_corners: None, osize: (600, 700) | 716.572 (+-51.954) | 1175.864 (+-52.191) | 1674.373 (+-51.815) | 1.424 (+-0.000) | 715.724 (+-41.104) Input (1, 3, 300, 400), torch.float32, torch.channels_last | mode: nearest, align_corners: None, osize: (600, 700) | 3604.989 (+-132.489) | 1096.933 (+-54.290) | 1270.347 (+-60.932) | 1.158 (+-0.000) | 3601.864 (+-140.218) Input (4, 3, 300, 400), torch.uint8, torch.contiguous_format | mode: nearest, align_corners: None, osize: (600, 700) | 6721.610 (+-355.997) | 4203.213 (+-134.362) | 6423.763 (+-225.311) | 1.528 (+-0.000) | 6715.626 (+-288.233) Input (4, 3, 300, 400), torch.uint8, torch.channels_last | mode: nearest, align_corners: None, osize: (600, 700) | 16695.467 (+-709.620) | 3460.013 (+-149.456) | 4001.810 (+-218.093) | 1.157 (+-0.000) | 16621.138 (+-713.320) Input (4, 3, 300, 400), torch.float32, torch.contiguous_format | mode: nearest, align_corners: None, osize: (600, 700) | 3020.017 (+-147.314) | 4743.164 (+-135.850) | 6709.494 (+-281.025) | 1.415 (+-0.000) | 3015.602 (+-105.852) Input (4, 3, 300, 400), torch.float32, torch.channels_last | mode: nearest, align_corners: None, osize: (600, 700) | 14456.688 (+-752.839) | 5150.893 (+-201.571) | 5737.315 (+-138.011) | 1.114 (+-0.000) | 14464.472 (+-720.027) Times are in microseconds (us). ``` This PR fixes arrange decomp such that `arange(s, dtype=torch.float32)` directly provides better IR and generated code. Code: ```python import torch def func(x): s = x.shape[-1] a = torch.arange(s, dtype=torch.float32) return s + a c_func = torch.compile(func) out = c_func(torch.rand(10)) ``` Graph on this PR: ``` ===== Forward graph 0 ===== /pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module): def forward(self): # File: check_arange_decomp.py:8 in func, code: a = torch.arange(s, dtype=torch.float32) iota: "i64[10]" = torch.ops.prims.iota.default(10, start = 0, step = 1, dtype = torch.int64, device = device(type='cpu'), requires_grad = False) convert_element_type: "f32[10]" = torch.ops.prims.convert_element_type.default(iota, torch.float32); iota = None # File: check_arange_decomp.py:9 in func, code: return s + a add: "f32[10]" = torch.ops.aten.add.Tensor(convert_element_type, 10); convert_element_type = None return (add,) ``` and C++ on this PR: ```c++ extern "C" void kernel(float* out_ptr0) { { #pragma GCC ivdep for(long x0=static_cast<long>(0L); x0<static_cast<long>(10L); x0+=static_cast<long>(1L)) { auto tmp0 = c10::convert<long>(x0); auto tmp1 = c10::convert<float>(tmp0); auto tmp2 = static_cast<float>(10.0); auto tmp3 = decltype(tmp1)(tmp1 + tmp2); out_ptr0[static_cast<long>(x0)] = tmp3; } } } ``` [ghstack-poisoned]
Configuration menu - View commit details
-
Copy full SHA for e791f44 - Browse repository at this point
Copy the full SHA e791f44View commit details
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.